Skip to main content

Notice

Please note that most of the software linked on this forum is likely to be safe to use. If you are unsure, feel free to ask in the relevant topics, or send a private message to an administrator or moderator. To help curb the problems of false positives, or in the event that you do find actual malware, you can contribute through the article linked here.
Topic: Improved FLAC encoder (Read 64776 times) previous topic - next topic
0 Members and 1 Guest are viewing this topic.

Improved FLAC encoder

Reply #50
I have cut down the permutations to 153.

I have achieved this in two ways: 1. I have lessened the number of tukey and guass values. 2. Most importantly, I am only using unique combinations.  Therefore hann+hann does not run, and hann+blackman runs but blackman+hann does not.

The batch file will take two optional parameters, e.g.:

Code: [Select]
flac-2a.bat -8 "my file.wav"
This allows you to call the batch file many times from another, e.g.:

Code: [Select]
CALL flac-2a.bat -3 "test.wav"
CALL flac-2a.bat -4 "test.wav"
CALL flac-2a.bat -5 "test.wav"
CALL flac-2a.bat -6 "test.wav"
CALL flac-2a.bat -7 "test.wav"
CALL flac-2a.bat -8 "test.wav"
If you don' pass the two parameters, e.g.: by double-clicking the file, it will use -5 and "test.wav".

Save the code below as flac-2a.bat (or download here).  NB: I ripped some code from Egor's batch file.  Thanks Egor.:

Code: [Select]
@ECHO OFF

IF [%1] EQU [] (SET flacCompression=-5) ELSE (SET flacCompression=%~1)
IF [%2] EQU [] (SET fileName="test.wav") ELSE (SET fileName=%2)

CALL :SetReportName %fileName% %flacCompression%
ECHO Compression: %flacCompression%>%reportName%
ECHO.>>%reportName%
CALL :RecordWavSize %fileName%

FOR %%n IN ("bartlett" "bartlett_hann" "blackman" "blackman_harris_4term_92db" "connes" "flattop" "gauss(0.25)" "gauss(0.5)" "hamming" "hann" "kaiser_bessel" "nuttall" "rectangle" "triangle" "tukey(0.25)" "tukey(0.5)" "tukey(0.75)" "welch") DO CALL :Loop2 %%n %flacCompression% %fileName%

TYPE temp.txt | SORT >>%reportName%
DEL temp.txt

GOTO:EOF

:Loop2
FOR %%m IN ("bartlett" "bartlett_hann" "blackman" "blackman_harris_4term_92db" "connes" "flattop" "gauss(0.25)" "gauss(0.5)" "hamming" "hann" "kaiser_bessel" "nuttall" "rectangle" "triangle" "tukey(0.25)" "tukey(0.5)" "tukey(0.75)" "welch") DO CALL :Encode %1 %%m %2 %3
GOTO:EOF

:Encode
IF [%1] GTR [%2] (
START /B /LOW /WAIT FLAC.EXE %3 -A %1 -A %2 %4 -o "%~1+%~2.flac"
CALL :RecordFlacSize "%~1+%~2.flac"
DEL "*.flac"
)
GOTO :EOF

:RecordFlacSize
ECHO %~z1    %~nx1>>temp.txt
GOTO :EOF

:RecordWavSize
ECHO %~z1    %~nx1>>%reportName%
ECHO.>>%reportName%
GOTO :EOF

:SetReportName
SET reportName="%~n1_%~2_report.txt"
GOTO :EOF

The results from my test while creating the batch file:

File 20.wav (Michael Kamen, Spier's Speech (from Band of Brothers soundtrack)
Quiet track (achieves ~40% compression at -5)

Code: [Select]
Compression: -5

10974476    20.wav

4526491    tukey(0.25)+triangle.flac
4526555    tukey(0.25)+connes.flac
4526633    tukey(0.5)+tukey(0.25).flac
4526653    tukey(0.25)+hamming.flac
4526732    tukey(0.25)+nuttall.flac
4526741    tukey(0.25)+blackman.flac
4526770    tukey(0.25)+hann.flac
4526826    tukey(0.25)+blackman_harris_4term_92db.flac
4526874    tukey(0.25)+gauss(0.25).flac
4526904    tukey(0.25)+gauss(0.5).flac
4527028    tukey(0.25)+kaiser_bessel.flac
4527045    welch+tukey(0.25).flac
4527232    tukey(0.75)+tukey(0.25).flac
4527432    tukey(0.5)+triangle.flac
4527527    welch+tukey(0.5).flac
4527556    tukey(0.5)+hamming.flac
4527604    tukey(0.5)+hann.flac
4527609    tukey(0.5)+blackman_harris_4term_92db.flac
4527622    tukey(0.5)+blackman.flac
4527670    tukey(0.25)+flattop.flac
4527706    tukey(0.5)+gauss(0.5).flac
4527713    tukey(0.5)+connes.flac
4527766    tukey(0.5)+gauss(0.25).flac
4527877    tukey(0.5)+kaiser_bessel.flac
4527877    tukey(0.5)+nuttall.flac
4528094    tukey(0.75)+tukey(0.5).flac
4528221    tukey(0.5)+flattop.flac
4528276    welch+tukey(0.75).flac
4528283    welch+triangle.flac
4528366    welch+connes.flac
4528532    welch+hamming.flac
4528580    tukey(0.25)+bartlett_hann.flac
4528687    welch+blackman.flac
4528714    welch+gauss(0.25).flac
4528804    welch+nuttall.flac
4528807    welch+gauss(0.5).flac
4528810    welch+hann.flac
4528862    welch+blackman_harris_4term_92db.flac
4528873    tukey(0.25)+bartlett.flac
4529070    welch+kaiser_bessel.flac
4529086    welch+flattop.flac
4529106    tukey(0.75)+triangle.flac
4529179    tukey(0.5)+bartlett_hann.flac
4529355    tukey(0.25)+rectangle.flac
4529376    tukey(0.75)+gauss(0.5).flac
4529382    tukey(0.75)+hamming.flac
4529470    tukey(0.75)+connes.flac
4529510    flattop+connes.flac
4529584    tukey(0.75)+blackman.flac
4529625    tukey(0.75)+gauss(0.25).flac
4529656    tukey(0.5)+rectangle.flac
4529683    tukey(0.75)+hann.flac
4529693    tukey(0.5)+bartlett.flac
4529845    tukey(0.75)+blackman_harris_4term_92db.flac
4529863    tukey(0.75)+nuttall.flac
4529869    tukey(0.75)+kaiser_bessel.flac
4529877    gauss(0.5)+connes.flac
4530030    gauss(0.5)+blackman.flac
4530219    tukey(0.75)+flattop.flac
4530296    welch+bartlett_hann.flac
4530446    hamming+gauss(0.5).flac
4530452    welch+bartlett.flac
4530544    gauss(0.5)+blackman_harris_4term_92db.flac
4530558    hamming+connes.flac
4530592    gauss(0.5)+gauss(0.25).flac
4530629    hann+gauss(0.5).flac
4530670    welch+rectangle.flac
4530737    hamming+blackman.flac
4530815    hann+hamming.flac
4530841    gauss(0.5)+flattop.flac
4530856    triangle+gauss(0.5).flac
4530891    connes+blackman.flac
4531065    triangle+hamming.flac
4531085    connes+blackman_harris_4term_92db.flac
4531132    tukey(0.75)+bartlett_hann.flac
4531151    hamming+blackman_harris_4term_92db.flac
4531180    triangle+connes.flac
4531192    hann+connes.flac
4531261    hamming+gauss(0.25).flac
4531349    tukey(0.75)+bartlett.flac
4531400    triangle+blackman.flac
4531417    tukey(0.75)+rectangle.flac
4531440    triangle+hann.flac
4531461    flattop+blackman.flac
4531628    triangle+blackman_harris_4term_92db.flac
4531664    triangle+kaiser_bessel.flac
4531674    hann+blackman.flac
4531675    triangle+gauss(0.25).flac
4531713    hamming+flattop.flac
4531807    hann+gauss(0.25).flac
4531822    triangle+nuttall.flac
4532016    triangle+flattop.flac
4532032    hann+blackman_harris_4term_92db.flac
4532071    kaiser_bessel+gauss(0.5).flac
4532150    hamming+bartlett_hann.flac
4532222    hann+flattop.flac
4532273    nuttall+gauss(0.5).flac
4532297    gauss(0.5)+bartlett_hann.flac
4532311    hamming+bartlett.flac
4532329    kaiser_bessel+connes.flac
4532369    connes+bartlett_hann.flac
4532504    kaiser_bessel+hamming.flac
4532519    nuttall+hamming.flac
4532524    gauss(0.5)+bartlett.flac
4532556    connes+bartlett.flac
4532581    nuttall+connes.flac
4532743    flattop+blackman_harris_4term_92db.flac
4532758    triangle+bartlett_hann.flac
4532978    kaiser_bessel+hann.flac
4533049    nuttall+hann.flac
4533061    triangle+rectangle.flac
4533078    hann+bartlett_hann.flac
4533087    triangle+bartlett.flac
4533145    gauss(0.25)+connes.flac
4533160    hann+bartlett.flac
4534281    kaiser_bessel+blackman.flac
4534376    blackman_harris_4term_92db+blackman.flac
4534449    nuttall+blackman.flac
4534669    kaiser_bessel+blackman_harris_4term_92db.flac
4534898    nuttall+kaiser_bessel.flac
4534979    blackman+bartlett_hann.flac
4534994    kaiser_bessel+gauss(0.25).flac
4535004    blackman+bartlett.flac
4535153    flattop+bartlett_hann.flac
4535333    gauss(0.25)+blackman.flac
4535401    kaiser_bessel+flattop.flac
4535492    nuttall+blackman_harris_4term_92db.flac
4535534    kaiser_bessel+bartlett_hann.flac
4535683    nuttall+gauss(0.25).flac
4535721    nuttall+bartlett_hann.flac
4535833    blackman_harris_4term_92db+bartlett_hann.flac
4535897    rectangle+connes.flac
4535908    kaiser_bessel+bartlett.flac
4535909    flattop+bartlett.flac
4536149    blackman_harris_4term_92db+bartlett.flac
4536172    nuttall+bartlett.flac
4536396    nuttall+flattop.flac
4536508    rectangle+hamming.flac
4536643    rectangle+hann.flac
4536740    gauss(0.25)+blackman_harris_4term_92db.flac
4537036    rectangle+blackman.flac
4537211    gauss(0.25)+bartlett_hann.flac
4537273    rectangle+kaiser_bessel.flac
4537340    rectangle+gauss(0.5).flac
4537625    rectangle+blackman_harris_4term_92db.flac
4537774    rectangle+nuttall.flac
4537870    gauss(0.25)+bartlett.flac
4538493    gauss(0.25)+flattop.flac
4538863    rectangle+gauss(0.25).flac
4539622    rectangle+flattop.flac
4561787    rectangle+bartlett_hann.flac
4563645    rectangle+bartlett.flac
4573163    bartlett_hann+bartlett.flac
The best compression achieved with one algo with this file was 4530305 with tukey(0.5).  The best two-algo (tukey(0.25)+triangle) is therefore 99.92% smaller (or 3814 bytes).

NB: I have just started a batch file which contains the lines:

Code: [Select]
FOR /R C:\DOS\FLAC\source %%G IN (*.wav) DO CALL C:\DOS\FLAC\flac-2a.bat -3 "%%G"
FOR /R C:\DOS\FLAC\source %%G IN (*.wav) DO CALL C:\DOS\FLAC\flac-2a.bat -4 "%%G"
FOR /R C:\DOS\FLAC\source %%G IN (*.wav) DO CALL C:\DOS\FLAC\flac-2a.bat -5 "%%G"
FOR /R C:\DOS\FLAC\source %%G IN (*.wav) DO CALL C:\DOS\FLAC\flac-2a.bat -6 "%%G"
FOR /R C:\DOS\FLAC\source %%G IN (*.wav) DO CALL C:\DOS\FLAC\flac-2a.bat -7 "%%G"
FOR /R C:\DOS\FLAC\source %%G IN (*.wav) DO CALL C:\DOS\FLAC\flac-2a.bat -8 "%%G"
This will create a report for the 28 files in all six compression levels (168 reports).  I suspect it will take some time, but hey, I am at work and the weekend is coming up.  Maybe it will have finished by monday.

Edit: Batch file updated to include compression setting in report name; format is now "<filename>_<compression>_report.txt".
Edit: Now only records file names in report, not full path.
I'm on a horse.

Improved FLAC encoder

Reply #51
Both multi-A value results sets posted so far appear to suggest that there is little difference between using algoA+algoB and algoB+algoA.  The results aren't exactly the same, but they do seem to be listed next to each other often.

We could save ourselves a lot of testing time if this were the case.?

Yeah, I also noted now that it will be a lot faster to test with Combinations, not Permutations. I'll try to do smth with it  .
27P2=702
27C2=351
Sorry Egor.  I only saw this after I had worked on it and made my post.  If I had known you were planning to work on it I would have left it to you.

As you can see, I simply do a GTR comparison to make sure I only use half of the matrix (you could use GEQ if you wanted to include the hann+hann type combinations).  You'll also notice I prefer to split my scripts into what I think of as "functions".  I find it a lot easier to work with; I'm not a natural batch file scripter...  I always find it quite a battle to do what I want.  Anyway, thanks for some tips; feel free to improve the script.
I'm on a horse.

Improved FLAC encoder

Reply #52
Both multi-A value results sets posted so far appear to suggest that there is little difference between using algoA+algoB and algoB+algoA.  The results aren't exactly the same, but they do seem to be listed next to each other often.

We could save ourselves a lot of testing time if this were the case.

I had never even heard of these windows before this thread.  Can anyone in the know confirm that, mathematically, there should be little difference if you apply A then B or B then A?

this is due to the slight inaccuracy in the way the encoder estimates which compressed subframe will be smallest, which is done to save time.  except for that, there should be no difference in the size, so it's only necessary to test only one permutation, not both.

Also, I assume it does not follow that the best ranking in the single algo tests will always be the best in a double?  I.e. an algo that performed poorly may perform excellently when applied following another algo?

yes it's possible that A could be best for single and B+C (neither A) could be best for double.  in a single test, B or C could perform well on some subframes but much worse on others, making it worse on average than A.

Josh

Improved FLAC encoder

Reply #53
I think when synthetic soul's single window test wraps up that will be enough data for single windows.  the only other thing I'd like to see is a few more results for 2 window combos for -5 and -8, and maybe a few more mono tests.

Two historical mono recordings (wavs are 2-channel) at -3, -5, and -8.

1. Robert Johnson - The Complete Recordings CD1 - [ Columbia 484414 2 ]
2. Beethoven - Sym No 9 - Furtwangler, Bayreuth, 1951 [ EMI Classics 5 66901 2 ]

I run twice Beethoven at -5, because the result seemed strange to me.

Code: [Select]
Robert Johnson - The Complete Recordings CD1 - [ Columbia 484414 2 ]

Settings     flac -3

578.215.724  wav

245.926.929  welch
245.939.287  tukey(0,5)
245.948.658  tukey(0,25)
245.968.613  tukey(0,625)
245.974.589  tukey(0,125)
245.984.795  tukey(0,0625)
246.000.783  tukey(0,03125)
246.002.471  tukey(0,75)
246.007.626  triangle
246.009.997  tukey(0,015625)
246.028.001  tukey(0,0078125)
246.030.942  hamming
246.032.417  gauss(0,5)
246.035.645  connes
246.043.584  tukey(0,875)
246.073.160  hann
246.182.526  blackman
246.218.960  kaiser_bessel
246.284.818  nuttall
246.304.429  blackman_harris_4term_92db
246.406.211  gauss(0,25)
246.548.779  flattop
246.803.430  gauss(0,125)
247.138.073  gauss(0,0625)
247.592.831  gauss(0,03125)
248.302.668  bartlett_hann
248.410.710  gauss(0,015625)
248.577.330  rectangle
249.166.448  bartlett
249.909.112  gauss(0,0078125)

Code: [Select]
Robert Johnson - The Complete Recordings CD1 - [ Columbia 484414 2 ]

Settings     flac -5

578.215.724  wav

123.185.979  tukey(0,5)
123.186.707  tukey(0,25)
123.188.755  welch
123.200.423  tukey(0,625)
123.204.582  tukey(0,125)
123.206.270  gauss(0,5)
123.211.714  tukey(0,0625)
123.213.404  hamming
123.215.609  tukey(0,75)
123.218.874  triangle
123.219.766  tukey(0,015625)
123.222.639  tukey(0,03125)
123.230.078  tukey(0,0078125)
123.235.044  connes
123.239.238  tukey(0,875)
123.254.689  hann
123.318.256  blackman
123.337.319  kaiser_bessel
123.367.754  nuttall
123.381.595  blackman_harris_4term_92db
123.426.257  gauss(0,25)
123.517.130  flattop
123.636.578  gauss(0,125)
123.831.731  gauss(0,0625)
124.101.063  gauss(0,03125)
124.251.864  bartlett_hann
124.361.169  rectangle
124.569.027  gauss(0,015625)
124.690.659  bartlett
125.422.159  gauss(0,0078125)

Code: [Select]
Robert Johnson - The Complete Recordings CD1 - [ Columbia 484414 2 ]

Settings     flac -8

578.215.724  wav

122.630.341  welch
122.630.846  tukey(0,25)
122.632.235  tukey(0,5)
122.643.290  tukey(0,125)
122.643.544  tukey(0,625)
122.653.271  tukey(0,0625)
122.654.598  tukey(0,75)
122.654.770  triangle
122.657.996  tukey(0,03125)
122.664.452  tukey(0,015625)
122.670.706  tukey(0,0078125)
122.670.997  connes
122.671.181  hamming
122.674.839  tukey(0,875)
122.685.809  gauss(0,5)
122.687.820  hann
122.734.431  blackman
122.751.616  kaiser_bessel
122.784.473  nuttall
122.790.467  blackman_harris_4term_92db
122.835.071  gauss(0,25)
122.908.004  flattop
123.027.245  gauss(0,125)
123.188.959  gauss(0,0625)
123.387.859  gauss(0,03125)
123.719.117  gauss(0,015625)
123.821.682  bartlett_hann
123.959.194  rectangle
124.252.601  bartlett
124.345.793  gauss(0,0078125)

Code: [Select]
Beethoven - Sym No 9 - Furtwangler, Bayreuth, 1951 [ EMI Classics 5 66901 2 ]

Settings     flac -3

787.343.804  wav

382.767.421  hamming
382.823.204  tukey(0,03125)
382.824.697  tukey(0,0625)
382.830.172  tukey(0,125)
382.830.461  tukey(0,25)
382.834.473  tukey(0,015625)
382.835.543  tukey(0,0078125)
382.856.564  tukey(0,5)
382.876.204  welch
382.891.296  tukey(0,625)
382.899.100  tukey(0,75)
382.906.125  gauss(0,5)
382.931.118  triangle
382.938.839  tukey(0,875)
382.945.791  connes
382.950.489  hann
383.018.884  blackman
383.030.040  kaiser_bessel
383.046.994  blackman_harris_4term_92db
383.063.836  nuttall
383.102.928  gauss(0,25)
383.217.557  flattop
383.289.582  gauss(0,125)
383.604.699  gauss(0,0625)
384.264.540  gauss(0,03125)
385.713.713  gauss(0,015625)
387.384.204  bartlett_hann
388.034.016  rectangle
388.389.225  bartlett
388.629.496  gauss(0,0078125)

Code: [Select]
Beethoven - Sym No 9 - Furtwangler, Bayreuth, 1951 [ EMI Classics 5 66901 2 ]

Settings     flac -5

787.343.804  wav

253.984.095  flattop
256.634.895  bartlett
270.866.056  tukey(0,0078125)
270.927.944  tukey(0,015625)
271.020.948  tukey(0,03125)
271.042.885  hamming
271.093.752  tukey(0,0625)
271.096.287  gauss(0,5)
271.113.678  tukey(0,125)
271.125.018  tukey(0,25)
271.151.001  tukey(0,5)
271.156.865  welch
271.171.949  tukey(0,625)
271.174.135  tukey(0,75)
271.183.259  triangle
271.191.134  connes
271.192.242  tukey(0,875)
271.201.758  hann
271.247.238  blackman
271.251.933  kaiser_bessel
271.267.510  blackman_harris_4term_92db
271.271.969  nuttall
271.294.233  gauss(0,25)
271.403.279  gauss(0,125)
271.592.420  gauss(0,0625)
271.971.047  gauss(0,03125)
272.768.895  gauss(0,015625)
273.442.925  rectangle
273.480.984  bartlett_hann
274.125.313  gauss(0,0078125)

Code: [Select]
Beethoven - Sym No 9 - Furtwangler, Bayreuth, 1951 [ EMI Classics 5 66901 2 ]

Settings     flac -8

787.343.804  wav

252.614.404  tukey(0,125)
252.614.917  tukey(0,03125)
252.616.253  tukey(0,0625)
252.618.078  tukey(0,015625)
252.621.741  tukey(0,25)
252.623.233  tukey(0,0078125)
252.642.075  tukey(0,5)
252.656.030  welch
252.660.253  tukey(0,625)
252.675.061  tukey(0,75)
252.691.381  tukey(0,875)
252.694.203  triangle
252.696.186  connes
252.704.538  hann
252.719.702  hamming
252.741.742  blackman
252.748.574  kaiser_bessel
252.764.093  nuttall
252.766.623  blackman_harris_4term_92db
252.790.850  gauss(0,25)
252.849.868  flattop
252.898.917  gauss(0,5)
252.921.172  gauss(0,125)
253.141.687  gauss(0,0625)
253.544.811  gauss(0,03125)
254.287.875  gauss(0,015625)
255.532.151  bartlett_hann
255.571.286  gauss(0,0078125)
255.952.655  rectangle
256.034.768  bartlett

Improved FLAC encoder

Reply #54
These tests were actually in encoding process when assumptions about double permutations were made, so reports include some redundant data  .
Code: [Select]
[url=http://www.amazon.com/gp/product/B00008H2JK/sr=8-3/qid=1146886570/ref=pd_bbs_3/102-1628512-5068934?%5Fencoding=UTF8]Jeff Lorber - Uncle Darrow's[/url]
Smooth Jazz
flac -8
41 025 980 test.wav

24 788 038 flattop+tukey(0,125)
24 788 043 tukey(0,125)+flattop
24 788 367 tukey(0,25)+flattop
24 788 375 flattop+tukey(0,25)
24 789 418 tukey(0,375)+flattop
24 789 423 flattop+tukey(0,375)
24 791 105 tukey(0,5)+flattop
24 791 111 flattop+tukey(0,5)
24 791 355 tukey(0,125)+nuttall
24 791 356 nuttall+tukey(0,125)
24 791 961 tukey(0,125)+blackman_harris_4term_92db
24 791 964 blackman_harris_4term_92db+tukey(0,125)
24 792 007 tukey(0,125)+gauss(0,25)
24 792 012 gauss(0,25)+tukey(0,125)
24 792 620 kaiser_bessel+tukey(0,125)
24 792 620 tukey(0,125)+kaiser_bessel
24 792 807 gauss(0,25)+tukey(0,25)
24 792 808 tukey(0,25)+gauss(0,25)
24 793 089 tukey(0,125)+blackman
24 793 090 blackman+tukey(0,125)
24 793 194 tukey(0,25)+nuttall
24 793 202 nuttall+tukey(0,25)
24 793 302 gauss(0,1875)+tukey(0,125)
24 793 303 tukey(0,125)+gauss(0,1875)
24 793 468 tukey(0,25)+gauss(0,1875)
24 793 470 gauss(0,1875)+tukey(0,25)
24 793 530 tukey(0,25)+blackman_harris_4term_92db
24 793 534 blackman_harris_4term_92db+tukey(0,25)
24 793 667 flattop+tukey(0,625)
24 793 672 tukey(0,625)+flattop
24 794 238 gauss(0,1875)+tukey(0,375)
24 794 240 tukey(0,375)+gauss(0,1875)
24 794 678 tukey(0,25)+kaiser_bessel
24 794 682 kaiser_bessel+tukey(0,25)
24 794 855 tukey(0,375)+gauss(0,25)
24 794 856 gauss(0,25)+tukey(0,375)
24 795 366 blackman+tukey(0,25)
24 795 369 tukey(0,25)+blackman
24 795 489 gauss(0,1875)+tukey(0,5)
24 795 491 tukey(0,5)+gauss(0,1875)
24 795 523 flattop+welch
24 795 523 tukey(0,375)+nuttall
24 795 524 nuttall+tukey(0,375)
24 795 527 welch+flattop
24 795 646 tukey(0,375)+blackman_harris_4term_92db
24 795 650 blackman_harris_4term_92db+tukey(0,375)
24 796 051 gauss(0,375)+tukey(0,125)
24 796 051 tukey(0,125)+gauss(0,375)
24 796 440 tukey(0,5)+gauss(0,25)
24 796 442 gauss(0,25)+tukey(0,5)
24 796 568 flattop+tukey(0,75)
24 796 571 tukey(0,75)+flattop
24 797 058 tukey(0,25)+gauss(0,125)
24 797 071 gauss(0,125)+tukey(0,25)
24 797 072 bartlett+blackman
24 797 082 blackman+bartlett
24 797 135 bartlett+kaiser_bessel
24 797 149 kaiser_bessel+bartlett
24 797 439 gauss(0,1875)+tukey(0,625)
24 797 441 tukey(0,625)+gauss(0,1875)
24 797 529 kaiser_bessel+tukey(0,375)
24 797 533 tukey(0,375)+kaiser_bessel
24 797 538 tukey(0,5)+gauss(0,125)
24 797 542 gauss(0,125)+tukey(0,5)
24 797 577 bartlett+gauss(0,375)
24 797 590 gauss(0,375)+bartlett
24 797 613 tukey(0,125)+gauss(0,125)
24 797 618 gauss(0,125)+tukey(0,125)
24 797 640 bartlett+nuttall
24 797 647 nuttall+bartlett
24 797 681 tukey(0,375)+gauss(0,125)
24 797 686 gauss(0,125)+tukey(0,375)
24 797 741 nuttall+tukey(0,5)
24 797 744 tukey(0,5)+nuttall
24 798 110 blackman_harris_4term_92db+tukey(0,5)
24 798 114 tukey(0,5)+blackman_harris_4term_92db
24 798 416 bartlett+blackman_harris_4term_92db
24 798 422 blackman_harris_4term_92db+bartlett
24 798 539 blackman+tukey(0,375)
24 798 552 tukey(0,375)+blackman
24 798 612 bartlett+hann
24 798 614 tukey(0,25)+gauss(0,375)
24 798 622 gauss(0,375)+tukey(0,25)
24 798 626 hann+bartlett
24 798 755 flattop+gauss(0,5)
24 798 763 gauss(0,5)+flattop
24 798 848 gauss(0,125)+tukey(0,625)
24 798 849 tukey(0,625)+gauss(0,125)
24 799 238 tukey(0,125)+hann
24 799 239 hann+tukey(0,125)
24 799 386 gauss(0,25)+tukey(0,625)
24 799 388 tukey(0,625)+gauss(0,25)
24 799 636 gauss(0,1875)+welch
24 799 638 welch+gauss(0,1875)
24 799 919 gauss(0,1875)+tukey(0,75)
24 799 919 tukey(0,75)+gauss(0,1875)
24 800 001 bartlett+gauss(0,25)
24 800 005 gauss(0,25)+bartlett
24 800 054 bartlett+hamming
24 800 061 hamming+bartlett
24 800 224 flattop+bartlett
24 800 225 bartlett+flattop
24 800 423 kaiser_bessel+tukey(0,5)
24 800 424 tukey(0,5)+kaiser_bessel
24 800 551 tukey(0,75)+gauss(0,125)
24 800 557 gauss(0,125)+tukey(0,75)
24 800 955 bartlett+gauss(0,4375)
24 800 962 tukey(0,5)+gauss(0,0625)
24 800 966 gauss(0,4375)+bartlett
24 800 974 gauss(0,0625)+tukey(0,5)
24 800 990 hamming+flattop
24 800 997 flattop+hamming
24 801 064 gauss(0,4375)+flattop
24 801 071 flattop+gauss(0,4375)
24 801 141 welch+gauss(0,125)
24 801 142 gauss(0,125)+welch
24 801 145 bartlett+connes
24 801 151 connes+bartlett
24 801 194 welch+gauss(0,25)
24 801 196 gauss(0,25)+welch
24 801 233 triangle+flattop
24 801 236 flattop+triangle
24 801 350 nuttall+tukey(0,625)
24 801 355 tukey(0,625)+nuttall
24 801 528 bartlett+tukey(0,875)
24 801 528 tukey(0,875)+bartlett
24 801 548 tukey(0,875)+flattop
24 801 555 flattop+tukey(0,875)
24 801 577 blackman+tukey(0,5)
24 801 580 tukey(0,5)+blackman
24 801 662 tukey(0,375)+gauss(0,0625)
24 801 672 gauss(0,0625)+tukey(0,375)
24 801 692 gauss(0,0625)+tukey(0,625)
24 801 694 tukey(0,625)+gauss(0,0625)
24 801 762 blackman_harris_4term_92db+tukey(0,625)
24 801 765 tukey(0,625)+blackman_harris_4term_92db
24 801 838 flattop+connes
24 801 843 connes+flattop
24 802 042 tukey(0,25)+hann
24 802 048 hann+tukey(0,25)
24 802 116 rectangle+nuttall
24 802 121 nuttall+rectangle
24 802 131 tukey(0,25)+gauss(0,0625)
24 802 141 gauss(0,0625)+tukey(0,25)
24 802 143 kaiser_bessel+rectangle
24 802 146 rectangle+kaiser_bessel
24 802 344 blackman+rectangle
24 802 345 rectangle+blackman
24 802 533 gauss(0,5)+gauss(0,1875)
24 802 537 gauss(0,1875)+gauss(0,5)
24 802 736 gauss(0,375)+tukey(0,375)
24 802 736 tukey(0,375)+gauss(0,375)
24 802 754 gauss(0,25)+tukey(0,75)
24 802 756 tukey(0,75)+gauss(0,25)
24 802 901 tukey(0,125)+hamming
24 802 903 hamming+tukey(0,125)
24 802 966 gauss(0,0625)+tukey(0,75)
24 802 968 tukey(0,75)+gauss(0,0625)
24 802 986 blackman_harris_4term_92db+rectangle
24 802 986 rectangle+blackman_harris_4term_92db
24 802 996 bartlett+triangle
24 803 006 triangle+bartlett
24 803 011 flattop+rectangle
24 803 012 rectangle+flattop
24 803 076 welch+blackman_harris_4term_92db
24 803 077 blackman_harris_4term_92db+welch
24 803 117 bartlett+tukey(0,75)
24 803 123 tukey(0,75)+bartlett
24 803 139 nuttall+welch
24 803 139 welch+nuttall
24 803 261 tukey(0,125)+gauss(0,0625)
24 803 263 gauss(0,0625)+tukey(0,125)
24 803 491 gauss(0,375)+rectangle
24 803 493 rectangle+gauss(0,375)
24 803 533 gauss(0,5)+gauss(0,125)
24 803 537 gauss(0,125)+gauss(0,5)
24 803 640 tukey(0,875)+tukey(0,125)
24 803 641 tukey(0,125)+tukey(0,875)
24 803 661 gauss(0,125)+hamming
24 803 661 hamming+gauss(0,125)
24 803 685 gauss(0,4375)+gauss(0,125)
24 803 686 gauss(0,125)+gauss(0,4375)
24 803 731 connes+tukey(0,125)
24 803 731 tukey(0,125)+connes
24 803 819 tukey(0,875)+gauss(0,125)
24 803 821 gauss(0,125)+tukey(0,875)
24 803 961 gauss(0,0625)+welch
24 803 963 welch+gauss(0,0625)
24 804 002 bartlett+gauss(0,1875)
24 804 007 gauss(0,1875)+bartlett
24 804 055 gauss(0,25)+rectangle
24 804 061 rectangle+gauss(0,25)
24 804 084 hamming+gauss(0,1875)
24 804 086 gauss(0,1875)+hamming
24 804 128 flattop+hann
24 804 130 hann+flattop
24 804 137 gauss(0,1875)+gauss(0,4375)
24 804 137 gauss(0,4375)+gauss(0,1875)
24 804 296 gauss(0,4375)+tukey(0,125)
24 804 296 tukey(0,125)+gauss(0,4375)
24 804 432 gauss(0,1875)+tukey(0,875)
24 804 438 tukey(0,875)+gauss(0,1875)
24 804 463 connes+gauss(0,125)
24 804 468 gauss(0,125)+connes
24 804 540 triangle+gauss(0,125)
24 804 546 gauss(0,125)+triangle
24 804 613 kaiser_bessel+tukey(0,625)
24 804 614 tukey(0,625)+kaiser_bessel
24 804 761 gauss(0,1875)+triangle
24 804 765 triangle+gauss(0,1875)
24 804 806 gauss(0,25)+gauss(0,5)
24 804 807 gauss(0,5)+gauss(0,25)
24 804 880 connes+gauss(0,1875)
24 804 881 gauss(0,1875)+connes
24 805 132 hann+gauss(0,125)
24 805 142 gauss(0,125)+hann
24 805 176 hamming+gauss(0,0625)
24 805 177 gauss(0,0625)+hamming
24 805 271 tukey(0,75)+nuttall
24 805 280 nuttall+tukey(0,75)
24 805 315 tukey(0,75)+blackman_harris_4term_92db
24 805 316 blackman_harris_4term_92db+tukey(0,75)
24 805 390 gauss(0,0625)+gauss(0,4375)
24 805 392 gauss(0,4375)+gauss(0,0625)
24 805 462 tukey(0,875)+gauss(0,0625)
24 805 465 gauss(0,0625)+tukey(0,875)
24 805 586 kaiser_bessel+welch
24 805 587 welch+kaiser_bessel
24 805 906 tukey(0,625)+blackman
24 805 912 blackman+tukey(0,625)
24 805 923 connes+gauss(0,0625)
24 805 924 gauss(0,0625)+connes
24 805 967 tukey(0,5)+gauss(0,375)
24 805 970 gauss(0,375)+tukey(0,5)
24 806 082 tukey(0,375)+hann
24 806 084 hann+tukey(0,375)
24 806 097 hann+rectangle
24 806 098 rectangle+hann
24 806 180 gauss(0,5)+gauss(0,0625)
24 806 183 gauss(0,0625)+gauss(0,5)
24 806 289 tukey(0,25)+hamming
24 806 295 hamming+tukey(0,25)
24 806 354 gauss(0,0625)+triangle
24 806 357 triangle+gauss(0,0625)
24 806 393 gauss(0,0625)+hann
24 806 396 hann+gauss(0,0625)
24 806 426 gauss(0,1875)+hann
24 806 438 hann+gauss(0,1875)
24 806 578 blackman_harris_4term_92db+gauss(0,5)
24 806 583 gauss(0,5)+blackman_harris_4term_92db
24 806 674 nuttall+gauss(0,5)
24 806 685 gauss(0,5)+nuttall
24 806 745 tukey(0,25)+connes
24 806 756 connes+tukey(0,25)
24 806 953 flattop+gauss(0,375)
24 806 953 tukey(0,25)+tukey(0,875)
24 806 954 gauss(0,375)+flattop
24 806 966 tukey(0,875)+tukey(0,25)
24 806 988 blackman+welch
24 806 990 welch+blackman
24 807 216 triangle+tukey(0,125)
24 807 217 tukey(0,125)+triangle
24 807 344 gauss(0,375)+gauss(0,125)
24 807 351 gauss(0,125)+gauss(0,375)
24 807 403 triangle+gauss(0,25)
24 807 404 gauss(0,25)+triangle
24 807 447 gauss(0,25)+hamming
24 807 449 hamming+gauss(0,25)
24 807 500 tukey(0,25)+gauss(0,4375)
24 807 504 gauss(0,4375)+tukey(0,25)
24 807 591 gauss(0,25)+gauss(0,4375)
24 807 599 gauss(0,4375)+gauss(0,25)
24 807 675 gauss(0,1875)+rectangle
24 807 677 rectangle+gauss(0,1875)
24 807 783 tukey(0,875)+gauss(0,25)
24 807 789 gauss(0,25)+tukey(0,875)
24 808 109 gauss(0,375)+gauss(0,0625)
24 808 112 gauss(0,0625)+gauss(0,375)
24 808 186 bartlett+tukey(0,625)
24 808 192 tukey(0,625)+bartlett
24 808 500 tukey(0,75)+tukey(0,125)
24 808 507 tukey(0,125)+tukey(0,75)
24 808 646 hamming+rectangle
24 808 647 rectangle+hamming
24 808 678 connes+gauss(0,25)
24 808 681 gauss(0,25)+connes
24 808 743 kaiser_bessel+tukey(0,75)
24 808 747 tukey(0,75)+kaiser_bessel
24 808 970 gauss(0,375)+gauss(0,1875)
24 808 971 gauss(0,1875)+gauss(0,375)
24 809 207 kaiser_bessel+gauss(0,5)
24 809 208 gauss(0,5)+kaiser_bessel
24 809 296 bartlett+gauss(0,5)
24 809 308 gauss(0,5)+bartlett
24 809 457 gauss(0,4375)+blackman_harris_4term_92db
24 809 467 blackman_harris_4term_92db+gauss(0,4375)
24 809 518 triangle+blackman_harris_4term_92db
24 809 524 blackman_harris_4term_92db+triangle
24 809 614 nuttall+triangle
24 809 614 triangle+nuttall
24 809 663 connes+rectangle
24 809 670 rectangle+connes
24 809 733 gauss(0,4375)+rectangle
24 809 735 rectangle+gauss(0,4375)
24 809 762 hamming+blackman_harris_4term_92db
24 809 764 blackman_harris_4term_92db+hamming
24 809 883 nuttall+gauss(0,4375)
24 809 885 gauss(0,4375)+nuttall
24 809 916 hann+tukey(0,5)
24 809 923 tukey(0,5)+hann
24 809 993 rectangle+tukey(0,875)
24 809 993 tukey(0,875)+rectangle
24 810 172 nuttall+hamming
24 810 174 hamming+nuttall
24 810 225 blackman+tukey(0,75)
24 810 233 tukey(0,75)+blackman
24 810 298 hamming+tukey(0,375)
24 810 301 tukey(0,375)+hamming
24 810 462 tukey(0,875)+blackman_harris_4term_92db
24 810 466 blackman_harris_4term_92db+tukey(0,875)
24 810 487 hann+gauss(0,25)
24 810 489 gauss(0,25)+hann
24 810 665 gauss(0,5)+blackman
24 810 671 blackman+gauss(0,5)
24 810 702 tukey(0,25)+triangle
24 810 714 triangle+tukey(0,25)
24 810 730 tukey(0,875)+nuttall
24 810 737 nuttall+tukey(0,875)
24 810 765 gauss(0,375)+tukey(0,625)
24 810 766 tukey(0,625)+gauss(0,375)
24 811 014 tukey(0,375)+connes
24 811 016 connes+tukey(0,375)
24 811 097 nuttall+connes
24 811 098 connes+nuttall
24 811 112 connes+blackman_harris_4term_92db
24 811 113 blackman_harris_4term_92db+connes
24 811 305 tukey(0,375)+tukey(0,875)
24 811 305 tukey(0,875)+tukey(0,375)
24 811 371 tukey(0,375)+gauss(0,4375)
24 811 373 gauss(0,4375)+tukey(0,375)
24 811 396 welch+gauss(0,375)
24 811 398 gauss(0,375)+welch
24 811 625 bartlett+welch
24 811 638 welch+bartlett
24 811 854 blackman+gauss(0,125)
24 811 863 gauss(0,125)+blackman
24 812 179 blackman+gauss(0,0625)
24 812 184 gauss(0,0625)+blackman
24 812 400 tukey(0,25)+tukey(0,75)
24 812 410 tukey(0,75)+tukey(0,25)
24 812 479 bartlett+gauss(0,125)
24 812 494 gauss(0,125)+bartlett
24 812 523 bartlett+tukey(0,5)
24 812 528 tukey(0,5)+bartlett
24 812 604 triangle+kaiser_bessel
24 812 608 kaiser_bessel+triangle
24 812 718 hamming+kaiser_bessel
24 812 718 kaiser_bessel+hamming
24 812 738 gauss(0,4375)+kaiser_bessel
24 812 738 kaiser_bessel+gauss(0,4375)
24 813 058 rectangle+triangle
24 813 058 triangle+rectangle
24 813 156 blackman+flattop
24 813 159 flattop+blackman
24 813 273 hann+nuttall
24 813 274 nuttall+hann
24 813 336 blackman_harris_4term_92db+hann
24 813 345 hann+blackman_harris_4term_92db
24 813 378 rectangle+tukey(0,75)
24 813 379 tukey(0,75)+rectangle
24 813 656 gauss(0,25)+gauss(0,375)
24 813 656 gauss(0,375)+gauss(0,25)
24 813 789 gauss(0,0625)+kaiser_bessel
24 813 789 kaiser_bessel+gauss(0,0625)
24 813 847 tukey(0,875)+kaiser_bessel
24 813 853 kaiser_bessel+tukey(0,875)
24 813 865 kaiser_bessel+gauss(0,125)
24 813 868 gauss(0,125)+kaiser_bessel
24 814 220 triangle+blackman
24 814 239 blackman+triangle
24 814 297 flattop+bartlett_hann
24 814 301 bartlett_hann+flattop
24 814 308 tukey(0,5)+hamming
24 814 309 hamming+tukey(0,5)
24 814 412 blackman+gauss(0,4375)
24 814 414 gauss(0,1875)+blackman
24 814 415 gauss(0,4375)+blackman
24 814 421 blackman+gauss(0,1875)
24 814 486 kaiser_bessel+connes
24 814 496 connes+kaiser_bessel
24 814 513 blackman+hamming
24 814 514 hamming+blackman
24 814 534 gauss(0,375)+gauss(0,5)
24 814 534 gauss(0,5)+gauss(0,375)
24 814 787 tukey(0,375)+triangle
24 814 798 triangle+tukey(0,375)
24 814 812 welch+hann
24 814 813 hann+welch
24 814 913 hann+tukey(0,625)
24 814 914 tukey(0,625)+hann
24 815 019 rectangle+gauss(0,125)
24 815 026 tukey(0,5)+gauss(0,4375)
24 815 027 gauss(0,4375)+tukey(0,5)
24 815 028 gauss(0,125)+rectangle
24 815 055 tukey(0,5)+connes
24 815 059 connes+tukey(0,5)
24 815 099 kaiser_bessel+bartlett_hann
24 815 107 bartlett_hann+kaiser_bessel
24 815 254 nuttall+bartlett_hann
24 815 265 bartlett_hann+nuttall
24 815 275 kaiser_bessel+flattop
24 815 276 flattop+kaiser_bessel
24 815 335 gauss(0,375)+tukey(0,75)
24 815 355 tukey(0,75)+gauss(0,375)
24 815 435 tukey(0,875)+tukey(0,5)
24 815 450 tukey(0,5)+tukey(0,875)
24 815 677 blackman_harris_4term_92db+bartlett_hann
24 815 690 bartlett_hann+blackman_harris_4term_92db
24 815 785 blackman+bartlett_hann
24 815 798 bartlett_hann+blackman
24 815 981 gauss(0,1875)+kaiser_bessel
24 815 985 kaiser_bessel+gauss(0,1875)
24 816 025 tukey(0,125)+gauss(0,5)
24 816 027 gauss(0,5)+tukey(0,125)
24 816 074 blackman+tukey(0,875)
24 816 077 tukey(0,875)+blackman
24 816 222 gauss(0,25)+bartlett_hann
24 816 259 bartlett_hann+gauss(0,25)
24 816 428 blackman_harris_4term_92db+gauss(0,375)
24 816 428 gauss(0,375)+blackman_harris_4term_92db
24 816 515 blackman+connes
24 816 519 connes+blackman
24 816 558 gauss(0,375)+nuttall
24 816 566 nuttall+gauss(0,375)
24 816 653 gauss(0,375)+bartlett_hann
24 816 660 bartlett_hann+gauss(0,375)
24 816 689 tukey(0,125)+tukey(0,625)
24 816 690 tukey(0,625)+tukey(0,125)
24 816 850 hann+kaiser_bessel
24 816 854 kaiser_bessel+hann
24 817 126 tukey(0,375)+tukey(0,75)
24 817 135 tukey(0,75)+tukey(0,375)
24 817 750 hann+gauss(0,5)
24 817 754 gauss(0,5)+hann
24 817 826 hann+bartlett_hann
24 817 827 bartlett_hann+hann
24 817 981 gauss(0,1875)+bartlett_hann
24 817 989 bartlett_hann+gauss(0,1875)
24 818 559 gauss(0,0625)+nuttall
24 818 563 nuttall+gauss(0,0625)
24 818 580 hamming+tukey(0,625)
24 818 582 tukey(0,625)+gauss(0,4375)
24 818 582 tukey(0,625)+hamming
24 818 587 gauss(0,4375)+tukey(0,625)
24 818 632 nuttall+gauss(0,125)
24 818 634 gauss(0,125)+nuttall
24 818 719 triangle+tukey(0,5)
24 818 722 tukey(0,5)+triangle
24 818 828 hann+blackman
24 818 831 blackman+hann
24 818 939 tukey(0,25)+gauss(0,5)
24 818 960 gauss(0,5)+tukey(0,25)
24 819 128 hamming+bartlett_hann
24 819 139 bartlett_hann+hamming
24 819 141 bartlett+tukey(0,375)
24 819 147 tukey(0,375)+bartlett
24 819 164 triangle+gauss(0,375)
24 819 165 gauss(0,375)+triangle
24 819 235 gauss(0,0625)+blackman_harris_4term_92db
24 819 238 blackman_harris_4term_92db+gauss(0,0625)
24 819 452 hamming+gauss(0,375)
24 819 464 gauss(0,375)+hamming
24 819 484 gauss(0,4375)+gauss(0,375)
24 819 485 gauss(0,375)+gauss(0,4375)
24 819 495 tukey(0,75)+bartlett_hann
24 819 498 bartlett_hann+tukey(0,75)
24 819 554 blackman_harris_4term_92db+gauss(0,125)
24 819 557 gauss(0,125)+blackman_harris_4term_92db
24 819 641 tukey(0,875)+bartlett_hann
24 819 649 bartlett_hann+tukey(0,875)
24 819 735 connes+welch
24 819 735 welch+connes
24 819 742 gauss(0,375)+kaiser_bessel
24 819 749 kaiser_bessel+gauss(0,375)
24 819 773 hann+tukey(0,75)
24 819 780 tukey(0,75)+hann
24 819 800 tukey(0,625)+connes
24 819 803 connes+tukey(0,625)
24 819 855 connes+bartlett_hann
24 819 869 bartlett_hann+connes
24 819 959 hamming+welch
24 819 961 welch+hamming
24 819 968 welch+tukey(0,875)
24 819 976 tukey(0,875)+welch
24 819 982 blackman+gauss(0,25)
24 819 987 gauss(0,25)+blackman
24 820 191 gauss(0,4375)+bartlett_hann
24 820 200 bartlett_hann+gauss(0,4375)
24 820 260 tukey(0,875)+gauss(0,375)
24 820 261 gauss(0,375)+tukey(0,875)
24 820 589 tukey(0,875)+tukey(0,625)
24 820 596 tukey(0,625)+tukey(0,875)
24 820 677 gauss(0,4375)+welch
24 820 678 welch+gauss(0,4375)
24 820 809 tukey(0,625)+rectangle
24 820 811 rectangle+tukey(0,625)
24 820 973 tukey(0,25)+tukey(0,625)
24 820 975 tukey(0,625)+tukey(0,25)
24 821 202 gauss(0,375)+connes
24 821 210 connes+gauss(0,375)
24 821 318 nuttall+flattop
24 821 325 flattop+nuttall
24 821 333 rectangle+gauss(0,5)
24 821 336 gauss(0,5)+rectangle
24 821 576 bartlett_hann+tukey(0,625)
24 821 578 tukey(0,625)+bartlett_hann
24 821 598 tukey(0,75)+tukey(0,5)
24 821 604 tukey(0,5)+tukey(0,75)
24 821 665 gauss(0,375)+blackman
24 821 672 blackman+gauss(0,375)
24 821 762 hann+triangle
24 821 763 triangle+hann
24 821 801 tukey(0,375)+gauss(0,5)
24 821 802 gauss(0,5)+tukey(0,375)
24 822 014 gauss(0,1875)+nuttall
24 822 020 nuttall+gauss(0,1875)
24 822 022 tukey(0,75)+gauss(0,4375)
24 822 024 gauss(0,4375)+tukey(0,75)
24 822 025 triangle+bartlett_hann
24 822 035 bartlett_hann+triangle
24 822 111 tukey(0,625)+triangle
24 822 114 triangle+tukey(0,625)
24 822 129 hann+gauss(0,4375)
24 822 138 gauss(0,4375)+hann
24 822 151 gauss(0,5)+tukey(0,875)
24 822 159 kaiser_bessel+gauss(0,25)
24 822 159 tukey(0,875)+gauss(0,5)
24 822 161 gauss(0,25)+kaiser_bessel
24 822 216 tukey(0,125)+welch
24 822 217 welch+tukey(0,125)
24 822 410 blackman_harris_4term_92db+flattop
24 822 412 flattop+blackman_harris_4term_92db
24 822 517 gauss(0,5)+connes
24 822 519 hamming+hann
24 822 522 hann+hamming
24 822 524 connes+gauss(0,5)
24 822 582 hamming+tukey(0,75)
24 822 584 bartlett+gauss(0,0625)
24 822 584 tukey(0,75)+hamming
24 822 592 gauss(0,0625)+bartlett
24 822 830 bartlett_hann+gauss(0,125)
24 822 831 gauss(0,125)+bartlett_hann
24 822 872 tukey(0,5)+bartlett_hann
24 822 878 bartlett_hann+tukey(0,5)
24 822 940 blackman_harris_4term_92db+gauss(0,1875)
24 822 941 gauss(0,1875)+blackman_harris_4term_92db
24 823 316 hann+gauss(0,375)
24 823 320 gauss(0,375)+hann
24 823 565 blackman+blackman_harris_4term_92db
24 823 568 blackman_harris_4term_92db+blackman
24 823 629 tukey(0,5)+gauss(0,5)
24 823 630 hamming+gauss(0,5)
24 823 631 gauss(0,5)+hamming
24 823 635 gauss(0,5)+tukey(0,5)
24 823 730 blackman+nuttall
24 823 735 nuttall+blackman
24 823 786 tukey(0,75)+triangle
24 823 788 triangle+tukey(0,75)
24 823 865 gauss(0,4375)+tukey(0,875)
24 823 866 tukey(0,875)+gauss(0,4375)
24 823 993 gauss(0,5)+tukey(0,75)
24 824 000 tukey(0,75)+gauss(0,5)
24 824 016 triangle+welch
24 824 021 welch+triangle
24 824 107 tukey(0,75)+connes
24 824 115 connes+tukey(0,75)
24 824 214 triangle+tukey(0,875)
24 824 225 tukey(0,875)+triangle
24 824 646 gauss(0,4375)+gauss(0,5)
24 824 647 gauss(0,5)+gauss(0,4375)
24 824 713 hann+tukey(0,875)
24 824 718 gauss(0,5)+tukey(0,625)
24 824 720 tukey(0,875)+hann
24 824 721 tukey(0,625)+gauss(0,5)
24 824 765 welch+tukey(0,75)
24 824 780 tukey(0,75)+welch
24 824 964 tukey(0,875)+hamming
24 824 965 hamming+tukey(0,875)
24 825 024 tukey(0,75)+tukey(0,875)
24 825 029 tukey(0,875)+tukey(0,75)
24 825 148 connes+hann
24 825 166 hann+connes
24 825 361 kaiser_bessel+blackman_harris_4term_92db
24 825 363 blackman_harris_4term_92db+kaiser_bessel
24 825 369 gauss(0,4375)+connes
24 825 373 connes+gauss(0,4375)
24 825 686 nuttall+kaiser_bessel
24 825 694 kaiser_bessel+nuttall
24 825 754 tukey(0,125)+tukey(0,5)
24 825 755 tukey(0,5)+tukey(0,125)
24 825 854 rectangle+gauss(0,0625)
24 825 870 gauss(0,0625)+rectangle
24 825 877 welch+rectangle
24 825 879 rectangle+welch
24 825 919 tukey(0,375)+tukey(0,625)
24 825 927 connes+triangle
24 825 929 tukey(0,625)+tukey(0,375)
24 825 938 triangle+connes
24 826 044 gauss(0,0625)+gauss(0,25)
24 826 044 gauss(0,25)+gauss(0,0625)
24 826 056 hamming+triangle
24 826 060 triangle+hamming
24 826 092 connes+hamming
24 826 093 hamming+connes
24 826 390 tukey(0,25)+welch
24 826 394 welch+tukey(0,25)
24 826 593 welch+bartlett_hann
24 826 605 bartlett_hann+welch
24 826 737 gauss(0,5)+triangle
24 826 748 triangle+gauss(0,5)
24 826 792 tukey(0,625)+tukey(0,75)
24 826 797 tukey(0,75)+tukey(0,625)
24 826 824 bartlett+tukey(0,25)
24 826 829 tukey(0,25)+bartlett
24 826 949 blackman+kaiser_bessel
24 826 965 kaiser_bessel+blackman
24 827 078 gauss(0,5)+bartlett_hann
24 827 094 bartlett_hann+gauss(0,5)
24 827 176 gauss(0,4375)+triangle
24 827 180 triangle+gauss(0,4375)
24 827 213 tukey(0,375)+bartlett_hann
24 827 234 bartlett_hann+tukey(0,375)
24 827 254 hamming+gauss(0,4375)
24 827 262 gauss(0,4375)+hamming
24 827 345 gauss(0,125)+gauss(0,25)
24 827 346 gauss(0,25)+gauss(0,125)
24 828 423 connes+tukey(0,875)
24 828 425 tukey(0,875)+connes
24 828 619 gauss(0,25)+nuttall
24 828 619 nuttall+gauss(0,25)
24 828 900 rectangle+tukey(0,5)
24 828 903 tukey(0,5)+rectangle
24 829 174 gauss(0,25)+blackman_harris_4term_92db
24 829 181 blackman_harris_4term_92db+gauss(0,25)
24 829 845 gauss(0,0625)+bartlett_hann
24 829 850 bartlett_hann+gauss(0,0625)
24 829 992 gauss(0,25)+flattop
24 829 996 flattop+gauss(0,25)
24 830 266 welch+gauss(0,5)
24 830 270 gauss(0,5)+welch
24 830 432 tukey(0,5)+tukey(0,25)
24 830 434 tukey(0,25)+tukey(0,5)
24 830 494 welch+tukey(0,625)
24 830 506 tukey(0,625)+welch
24 830 580 tukey(0,375)+welch
24 830 583 welch+tukey(0,375)
24 830 649 tukey(0,5)+tukey(0,625)
24 830 651 tukey(0,625)+tukey(0,5)
24 831 205 nuttall+blackman_harris_4term_92db
24 831 227 blackman_harris_4term_92db+nuttall
24 831 230 gauss(0,25)+gauss(0,1875)
24 831 234 gauss(0,1875)+gauss(0,25)
24 832 279 welch+tukey(0,5)
24 832 283 tukey(0,5)+welch
24 832 801 tukey(0,25)+bartlett_hann
24 832 809 bartlett_hann+tukey(0,25)
24 834 619 flattop+gauss(0,0625)
24 834 624 gauss(0,0625)+flattop
24 835 875 gauss(0,375)+gauss(0,375)
24 836 093 tukey(0,375)+tukey(0,5)
24 836 096 tukey(0,5)+tukey(0,375)
24 836 469 hann+hann
24 837 076 hamming+hamming
24 837 281 flattop+gauss(0,125)
24 837 296 gauss(0,125)+flattop
24 837 401 blackman+blackman
24 837 588 gauss(0,4375)+gauss(0,4375)
24 838 004 bartlett+tukey(0,125)
24 838 012 tukey(0,125)+bartlett
24 838 179 tukey(0,125)+tukey(0,375)
24 838 191 tukey(0,375)+tukey(0,125)
24 838 563 kaiser_bessel+kaiser_bessel
24 838 621 connes+connes
24 838 940 tukey(0,875)+tukey(0,875)
24 839 730 tukey(0,375)+rectangle
24 839 732 rectangle+tukey(0,375)
24 839 780 tukey(0,75)+tukey(0,75)
24 840 050 triangle+triangle
24 840 789 gauss(0,1875)+gauss(0,0625)
24 840 794 gauss(0,0625)+gauss(0,1875)
24 840 963 nuttall+nuttall
24 841 298 flattop+gauss(0,1875)
24 841 313 gauss(0,1875)+flattop
24 841 708 blackman_harris_4term_92db+blackman_harris_4term_92db
24 842 273 tukey(0,125)+bartlett_hann
24 842 276 bartlett_hann+tukey(0,125)
24 843 194 tukey(0,375)+tukey(0,25)
24 843 196 tukey(0,25)+tukey(0,375)
24 843 897 gauss(0,1875)+gauss(0,125)
24 843 906 gauss(0,125)+gauss(0,1875)
24 844 123 tukey(0,625)+tukey(0,625)
24 845 407 gauss(0,5)+gauss(0,5)
24 846 581 gauss(0,25)+gauss(0,25)
24 847 712 welch+welch
24 848 312 tukey(0,5)+tukey(0,5)
24 851 428 flattop+flattop
24 852 855 tukey(0,25)+rectangle
24 852 859 rectangle+tukey(0,25)
24 852 988 tukey(0,25)+tukey(0,125)
24 852 996 tukey(0,125)+tukey(0,25)
24 855 532 tukey(0,375)+tukey(0,375)
24 856 922 gauss(0,1875)+gauss(0,1875)
24 860 963 gauss(0,0625)+gauss(0,125)
24 860 969 gauss(0,125)+gauss(0,0625)
24 864 565 tukey(0,25)+tukey(0,25)
24 869 792 rectangle+tukey(0,125)
24 869 792 tukey(0,125)+rectangle
24 873 460 gauss(0,125)+gauss(0,125)
24 877 263 tukey(0,125)+tukey(0,125)
24 895 376 gauss(0,0625)+gauss(0,0625)
24 917 594 rectangle+bartlett_hann
24 917 599 bartlett_hann+rectangle
24 923 201 bartlett+rectangle
24 923 215 rectangle+bartlett
24 937 851 bartlett+bartlett_hann
24 937 874 bartlett_hann+bartlett
24 969 102 bartlett_hann+bartlett_hann
24 986 279 rectangle+rectangle
25 008 500 bartlett+bartlett

Code: [Select]
[url=http://www.amazon.com/gp/product/B00006AGFM/sr=8-1/qid=1146886260/ref=pd_bbs_1/102-1628512-5068934?%5Fencoding=UTF8]Michael Manson - Seven Whole Days[/url]
Smooth Jazz
flac -8
57 264 188 test.wav

36 711 741 tukey(0,125)+flattop
36 711 769 flattop+tukey(0,125)
36 712 379 tukey(0,125)+gauss(0,1875)
36 712 405 gauss(0,1875)+tukey(0,125)
36 712 785 tukey(0,25)+flattop
36 712 822 flattop+tukey(0,25)
36 712 826 tukey(0,125)+gauss(0,125)
36 712 872 gauss(0,125)+tukey(0,125)
36 713 131 tukey(0,125)+gauss(0,25)
36 713 159 gauss(0,25)+tukey(0,125)
36 713 271 tukey(0,25)+gauss(0,125)
36 713 321 gauss(0,125)+tukey(0,25)
36 713 664 tukey(0,25)+gauss(0,1875)
36 713 707 gauss(0,1875)+tukey(0,25)
36 714 797 tukey(0,25)+gauss(0,25)
36 714 832 gauss(0,25)+tukey(0,25)
36 714 882 tukey(0,375)+gauss(0,125)
36 714 940 gauss(0,125)+tukey(0,375)
36 714 967 tukey(0,375)+flattop
36 715 005 flattop+tukey(0,375)
36 715 084 tukey(0,125)+blackman_harris_4term_92db
36 715 106 blackman_harris_4term_92db+tukey(0,125)
36 715 457 tukey(0,125)+nuttall
36 715 479 nuttall+tukey(0,125)
36 715 509 tukey(0,375)+gauss(0,1875)
36 715 544 gauss(0,1875)+tukey(0,375)
36 717 009 tukey(0,25)+blackman_harris_4term_92db
36 717 036 blackman_harris_4term_92db+tukey(0,25)
36 717 250 tukey(0,5)+gauss(0,125)
36 717 291 tukey(0,25)+nuttall
36 717 300 gauss(0,125)+tukey(0,5)
36 717 321 nuttall+tukey(0,25)
36 717 471 tukey(0,375)+gauss(0,25)
36 717 501 gauss(0,25)+tukey(0,375)
36 717 623 tukey(0,125)+kaiser_bessel
36 717 655 kaiser_bessel+tukey(0,125)
36 718 062 tukey(0,5)+flattop
36 718 098 flattop+tukey(0,5)
36 718 316 tukey(0,5)+gauss(0,1875)
36 718 340 tukey(0,25)+gauss(0,0625)
36 718 353 gauss(0,1875)+tukey(0,5)
36 718 422 gauss(0,0625)+tukey(0,25)
36 718 565 tukey(0,125)+gauss(0,0625)
36 718 633 gauss(0,0625)+tukey(0,125)
36 718 733 tukey(0,125)+blackman
36 718 765 blackman+tukey(0,125)
36 718 859 tukey(0,375)+gauss(0,0625)
36 718 934 gauss(0,0625)+tukey(0,375)
36 719 434 tukey(0,625)+gauss(0,125)
36 719 488 gauss(0,125)+tukey(0,625)
36 720 052 tukey(0,25)+kaiser_bessel
36 720 083 kaiser_bessel+tukey(0,25)
36 720 263 tukey(0,375)+blackman_harris_4term_92db
36 720 293 blackman_harris_4term_92db+tukey(0,375)
36 720 311 tukey(0,5)+gauss(0,0625)
36 720 385 gauss(0,0625)+tukey(0,5)
36 720 677 tukey(0,375)+nuttall
36 720 699 nuttall+tukey(0,375)
36 721 011 tukey(0,25)+blackman
36 721 072 blackman+tukey(0,25)
36 721 089 tukey(0,625)+flattop
36 721 094 tukey(0,5)+gauss(0,25)
36 721 124 flattop+tukey(0,625)
36 721 129 gauss(0,25)+tukey(0,5)
36 721 279 nuttall+bartlett
36 721 290 bartlett+nuttall
36 721 300 bartlett+gauss(0,25)
36 721 303 gauss(0,25)+bartlett
36 721 322 tukey(0,625)+gauss(0,1875)
36 721 358 gauss(0,1875)+tukey(0,625)
36 721 448 welch+gauss(0,125)
36 721 474 blackman_harris_4term_92db+bartlett
36 721 483 bartlett+blackman_harris_4term_92db
36 721 505 gauss(0,125)+welch
36 721 593 tukey(0,625)+gauss(0,0625)
36 721 664 gauss(0,0625)+tukey(0,625)
36 721 936 kaiser_bessel+bartlett
36 721 946 bartlett+kaiser_bessel
36 722 042 blackman+bartlett
36 722 050 bartlett+blackman
36 722 628 tukey(0,125)+gauss(0,375)
36 722 668 gauss(0,375)+tukey(0,125)
36 722 900 gauss(0,375)+bartlett
36 722 909 bartlett+gauss(0,375)
36 722 932 welch+flattop
36 722 975 flattop+welch
36 723 191 welch+gauss(0,1875)
36 723 232 gauss(0,1875)+welch
36 723 471 tukey(0,375)+kaiser_bessel
36 723 486 kaiser_bessel+tukey(0,375)
36 723 544 bartlett+flattop
36 723 555 tukey(0,75)+gauss(0,125)
36 723 556 flattop+bartlett
36 723 609 gauss(0,125)+tukey(0,75)
36 723 769 bartlett+hann
36 723 777 hann+bartlett
36 723 830 welch+gauss(0,0625)
36 723 843 bartlett+gauss(0,1875)
36 723 863 gauss(0,1875)+bartlett
36 723 899 gauss(0,0625)+welch
36 724 245 tukey(0,5)+blackman_harris_4term_92db
36 724 275 blackman_harris_4term_92db+tukey(0,5)
36 724 638 tukey(0,5)+nuttall
36 724 664 nuttall+tukey(0,5)
36 724 670 tukey(0,875)+bartlett
36 724 681 bartlett+tukey(0,875)
36 724 745 tukey(0,625)+gauss(0,25)
36 724 769 gauss(0,25)+tukey(0,625)
36 724 801 tukey(0,75)+gauss(0,0625)
36 724 812 tukey(0,375)+blackman
36 724 843 blackman+tukey(0,375)
36 724 871 gauss(0,0625)+tukey(0,75)
36 725 258 tukey(0,125)+hann
36 725 287 hann+tukey(0,125)
36 725 368 connes+bartlett
36 725 385 bartlett+connes
36 725 519 tukey(0,25)+gauss(0,375)
36 725 548 gauss(0,375)+tukey(0,25)
36 725 619 tukey(0,75)+gauss(0,1875)
36 725 654 gauss(0,1875)+tukey(0,75)
36 725 971 welch+gauss(0,25)
36 725 992 tukey(0,75)+flattop
36 726 008 gauss(0,25)+welch
36 726 018 flattop+tukey(0,75)
36 726 227 gauss(0,5)+gauss(0,125)
36 726 261 tukey(0,875)+gauss(0,125)
36 726 291 gauss(0,125)+gauss(0,5)
36 726 343 gauss(0,125)+tukey(0,875)
36 726 478 hamming+bartlett
36 726 491 bartlett+hamming
36 726 877 gauss(0,4375)+bartlett
36 726 884 bartlett+gauss(0,4375)
36 726 938 tukey(0,875)+gauss(0,0625)
36 727 003 gauss(0,0625)+tukey(0,875)
36 727 648 triangle+gauss(0,125)
36 727 672 triangle+bartlett
36 727 676 bartlett+triangle
36 727 691 gauss(0,4375)+gauss(0,125)
36 727 723 gauss(0,125)+triangle
36 727 737 hamming+gauss(0,125)
36 727 759 tukey(0,75)+bartlett
36 727 764 bartlett+tukey(0,75)
36 727 782 gauss(0,125)+gauss(0,4375)
36 727 827 gauss(0,125)+hamming
36 727 862 tukey(0,5)+kaiser_bessel
36 727 876 connes+gauss(0,125)
36 727 883 kaiser_bessel+tukey(0,5)
36 727 968 gauss(0,125)+connes
36 728 058 tukey(0,625)+blackman_harris_4term_92db
36 728 080 blackman_harris_4term_92db+tukey(0,625)
36 728 119 gauss(0,5)+gauss(0,0625)
36 728 139 gauss(0,5)+gauss(0,1875)
36 728 144 tukey(0,25)+hann
36 728 170 gauss(0,1875)+gauss(0,5)
36 728 175 hann+tukey(0,25)
36 728 195 gauss(0,0625)+gauss(0,5)
36 728 235 hamming+gauss(0,0625)
36 728 285 tukey(0,625)+nuttall
36 728 307 bartlett+gauss(0,125)
36 728 310 nuttall+tukey(0,625)
36 728 314 gauss(0,0625)+hamming
36 728 363 gauss(0,125)+bartlett
36 728 418 triangle+gauss(0,0625)
36 728 423 gauss(0,4375)+gauss(0,0625)
36 728 423 gauss(0,5)+flattop
36 728 464 flattop+gauss(0,5)
36 728 483 gauss(0,0625)+gauss(0,4375)
36 728 485 gauss(0,0625)+triangle
36 728 756 connes+gauss(0,0625)
36 728 820 gauss(0,0625)+connes
36 728 888 tukey(0,875)+gauss(0,1875)
36 728 929 gauss(0,1875)+tukey(0,875)
36 728 943 tukey(0,125)+tukey(0,875)
36 728 955 tukey(0,875)+tukey(0,125)
36 729 051 tukey(0,125)+connes
36 729 067 connes+tukey(0,125)
36 729 145 tukey(0,5)+blackman
36 729 172 blackman+tukey(0,5)
36 729 341 tukey(0,875)+flattop
36 729 378 flattop+tukey(0,875)
36 729 599 welch+blackman_harris_4term_92db
36 729 644 blackman_harris_4term_92db+welch
36 729 700 welch+nuttall
36 729 710 tukey(0,75)+gauss(0,25)
36 729 719 nuttall+welch
36 729 736 gauss(0,25)+tukey(0,75)
36 729 744 tukey(0,375)+gauss(0,375)
36 729 772 gauss(0,375)+tukey(0,375)
36 729 958 triangle+gauss(0,1875)
36 729 991 tukey(0,625)+bartlett
36 729 993 gauss(0,1875)+triangle
36 730 024 bartlett+tukey(0,625)
36 730 160 triangle+flattop
36 730 177 hann+gauss(0,125)
36 730 191 flattop+triangle
36 730 231 hann+gauss(0,0625)
36 730 263 gauss(0,125)+hann
36 730 290 gauss(0,0625)+hann
36 730 352 hamming+gauss(0,1875)
36 730 397 gauss(0,1875)+hamming
36 730 524 gauss(0,4375)+gauss(0,1875)
36 730 569 gauss(0,1875)+gauss(0,4375)
36 730 621 rectangle+gauss(0,25)
36 730 669 gauss(0,25)+rectangle
36 730 705 gauss(0,4375)+flattop
36 730 746 flattop+gauss(0,4375)
36 730 854 hamming+flattop
36 730 890 flattop+hamming
36 730 893 connes+gauss(0,1875)
36 730 932 tukey(0,125)+hamming
36 730 933 gauss(0,1875)+connes
36 730 948 hamming+tukey(0,125)
36 731 115 connes+flattop
36 731 153 flattop+connes
36 731 255 rectangle+blackman_harris_4term_92db
36 731 286 blackman_harris_4term_92db+rectangle
36 731 370 rectangle+nuttall
36 731 399 nuttall+rectangle
36 731 442 gauss(0,5)+gauss(0,25)
36 731 481 gauss(0,25)+gauss(0,5)
36 731 663 tukey(0,125)+gauss(0,4375)
36 731 679 gauss(0,4375)+tukey(0,125)
36 731 935 tukey(0,25)+connes
36 731 964 connes+tukey(0,25)
36 732 254 tukey(0,25)+tukey(0,875)
36 732 270 tukey(0,875)+tukey(0,25)
36 732 273 gauss(0,375)+gauss(0,125)
36 732 274 gauss(0,375)+gauss(0,0625)
36 732 323 tukey(0,625)+kaiser_bessel
36 732 334 rectangle+flattop
36 732 337 kaiser_bessel+tukey(0,625)
36 732 345 gauss(0,125)+gauss(0,375)
36 732 347 gauss(0,0625)+gauss(0,375)
36 732 379 flattop+rectangle
36 732 575 rectangle+kaiser_bessel
36 732 603 kaiser_bessel+rectangle
36 732 756 tukey(0,375)+hann
36 732 777 hann+tukey(0,375)
36 732 844 rectangle+gauss(0,1875)
36 732 892 gauss(0,1875)+rectangle
36 733 010 welch+kaiser_bessel
36 733 029 kaiser_bessel+welch
36 733 096 hann+gauss(0,1875)
36 733 139 gauss(0,1875)+hann
36 733 141 rectangle+blackman
36 733 183 blackman+rectangle
36 733 469 tukey(0,75)+blackman_harris_4term_92db
36 733 482 blackman_harris_4term_92db+tukey(0,75)
36 733 546 tukey(0,875)+gauss(0,25)
36 733 563 gauss(0,25)+tukey(0,875)
36 733 587 tukey(0,125)+triangle
36 733 606 tukey(0,625)+blackman
36 733 610 triangle+tukey(0,125)
36 733 631 blackman+tukey(0,625)
36 733 809 hann+flattop
36 733 853 triangle+gauss(0,25)
36 733 854 flattop+hann
36 733 881 gauss(0,25)+triangle
36 733 949 tukey(0,75)+nuttall
36 733 957 nuttall+tukey(0,75)
36 734 294 tukey(0,25)+hamming
36 734 323 hamming+tukey(0,25)
36 734 377 tukey(0,5)+gauss(0,375)
36 734 393 gauss(0,375)+tukey(0,5)
36 734 482 welch+blackman
36 734 517 blackman+welch
36 734 610 hamming+gauss(0,25)
36 734 640 gauss(0,5)+blackman_harris_4term_92db
36 734 641 gauss(0,25)+hamming
36 734 652 gauss(0,4375)+gauss(0,25)
36 734 659 blackman_harris_4term_92db+gauss(0,5)
36 734 668 gauss(0,25)+gauss(0,4375)
36 734 794 welch+bartlett
36 734 816 bartlett+welch
36 734 916 connes+gauss(0,25)
36 734 936 gauss(0,25)+connes
36 735 039 tukey(0,75)+tukey(0,125)
36 735 042 tukey(0,125)+tukey(0,75)
36 735 072 tukey(0,5)+bartlett
36 735 103 bartlett+tukey(0,5)
36 735 105 tukey(0,25)+gauss(0,4375)
36 735 132 gauss(0,4375)+tukey(0,25)
36 735 261 rectangle+gauss(0,375)
36 735 291 gauss(0,375)+rectangle
36 735 306 gauss(0,5)+nuttall
36 735 344 nuttall+gauss(0,5)
36 735 665 gauss(0,5)+bartlett
36 735 671 bartlett+gauss(0,5)
36 735 713 blackman+gauss(0,0625)
36 735 775 gauss(0,0625)+blackman
36 735 872 gauss(0,375)+gauss(0,1875)
36 735 910 gauss(0,1875)+gauss(0,375)
36 736 315 gauss(0,375)+flattop
36 736 348 flattop+gauss(0,375)
36 736 417 blackman+gauss(0,125)
36 736 502 gauss(0,125)+blackman
36 736 733 tukey(0,25)+triangle
36 736 756 triangle+tukey(0,25)
36 736 789 tukey(0,375)+tukey(0,875)
36 736 805 tukey(0,875)+tukey(0,375)
36 736 823 tukey(0,375)+connes
36 736 831 connes+tukey(0,375)
36 737 152 rectangle+gauss(0,125)
36 737 162 rectangle+hann
36 737 188 hann+rectangle
36 737 211 gauss(0,125)+rectangle
36 737 398 kaiser_bessel+gauss(0,0625)
36 737 456 gauss(0,0625)+kaiser_bessel
36 737 531 triangle+blackman_harris_4term_92db
36 737 545 blackman_harris_4term_92db+triangle
36 737 548 tukey(0,875)+blackman_harris_4term_92db
36 737 556 blackman_harris_4term_92db+tukey(0,875)
36 737 700 triangle+nuttall
36 737 715 nuttall+triangle
36 737 723 tukey(0,875)+nuttall
36 737 736 nuttall+tukey(0,875)
36 737 871 tukey(0,5)+hann
36 737 880 hann+gauss(0,25)
36 737 894 hann+tukey(0,5)
36 737 900 tukey(0,75)+kaiser_bessel
36 737 906 gauss(0,25)+hann
36 737 919 kaiser_bessel+tukey(0,75)
36 738 228 gauss(0,4375)+blackman_harris_4term_92db
36 738 238 blackman_harris_4term_92db+gauss(0,4375)
36 738 318 kaiser_bessel+gauss(0,125)
36 738 391 gauss(0,125)+kaiser_bessel
36 738 560 hamming+blackman_harris_4term_92db
36 738 568 gauss(0,5)+kaiser_bessel
36 738 582 blackman_harris_4term_92db+hamming
36 738 588 gauss(0,4375)+nuttall
36 738 598 kaiser_bessel+gauss(0,5)
36 738 599 nuttall+gauss(0,4375)
36 738 632 tukey(0,25)+tukey(0,75)
36 738 652 tukey(0,75)+tukey(0,25)
36 738 745 hamming+tukey(0,375)
36 738 756 tukey(0,375)+hamming
36 738 957 hamming+nuttall
36 738 968 nuttall+hamming
36 738 988 connes+blackman_harris_4term_92db
36 739 004 blackman_harris_4term_92db+connes
36 739 228 tukey(0,625)+gauss(0,375)
36 739 240 gauss(0,375)+tukey(0,625)
36 739 282 connes+nuttall
36 739 294 nuttall+connes
36 739 439 tukey(0,375)+gauss(0,4375)
36 739 461 gauss(0,4375)+tukey(0,375)
36 739 469 tukey(0,75)+blackman
36 739 498 blackman+tukey(0,75)
36 739 579 rectangle+tukey(0,875)
36 739 595 tukey(0,875)+rectangle
36 739 628 welch+gauss(0,375)
36 739 658 gauss(0,375)+welch
36 739 879 rectangle+connes
36 739 898 connes+rectangle
36 739 958 gauss(0,5)+blackman
36 739 998 blackman+gauss(0,5)
36 740 165 tukey(0,375)+bartlett
36 740 194 bartlett+tukey(0,375)
36 740 515 blackman+gauss(0,1875)
36 740 560 gauss(0,1875)+blackman
36 740 692 gauss(0,375)+gauss(0,25)
36 740 729 gauss(0,25)+gauss(0,375)
36 741 100 rectangle+hamming
36 741 124 hamming+rectangle
36 741 262 nuttall+gauss(0,0625)
36 741 316 blackman_harris_4term_92db+gauss(0,0625)
36 741 316 gauss(0,0625)+nuttall
36 741 346 triangle+tukey(0,375)
36 741 369 gauss(0,0625)+blackman_harris_4term_92db
36 741 373 tukey(0,375)+triangle
36 741 441 triangle+kaiser_bessel
36 741 449 kaiser_bessel+triangle
36 741 490 blackman+flattop
36 741 588 flattop+blackman
36 741 638 bartlett+gauss(0,0625)
36 741 681 gauss(0,0625)+bartlett
36 741 703 rectangle+gauss(0,4375)
36 741 715 gauss(0,4375)+rectangle
36 741 819 tukey(0,5)+connes
36 741 834 connes+tukey(0,5)
36 741 839 tukey(0,125)+tukey(0,625)
36 741 859 tukey(0,625)+tukey(0,125)
36 741 910 tukey(0,875)+kaiser_bessel
36 741 924 kaiser_bessel+tukey(0,875)
36 742 032 hann+blackman_harris_4term_92db
36 742 044 blackman_harris_4term_92db+hann
36 742 096 tukey(0,5)+tukey(0,875)
36 742 113 tukey(0,875)+tukey(0,5)
36 742 266 gauss(0,4375)+kaiser_bessel
36 742 278 kaiser_bessel+gauss(0,4375)
36 742 509 tukey(0,625)+hann
36 742 513 hann+tukey(0,625)
36 742 533 hann+nuttall
36 742 543 nuttall+hann
36 742 608 nuttall+gauss(0,125)
36 742 611 kaiser_bessel+gauss(0,1875)
36 742 646 gauss(0,1875)+kaiser_bessel
36 742 689 gauss(0,125)+nuttall
36 742 692 kaiser_bessel+hamming
36 742 698 hamming+kaiser_bessel
36 742 715 bartlett_hann+gauss(0,25)
36 742 719 blackman_harris_4term_92db+gauss(0,125)
36 742 738 gauss(0,25)+bartlett_hann
36 742 781 gauss(0,125)+blackman_harris_4term_92db
36 742 914 triangle+blackman
36 742 922 blackman+triangle
36 743 000 bartlett_hann+flattop
36 743 031 flattop+bartlett_hann
36 743 035 welch+hann
36 743 055 hann+welch
36 743 261 bartlett_hann+gauss(0,1875)
36 743 291 gauss(0,1875)+bartlett_hann
36 743 349 tukey(0,875)+blackman
36 743 358 blackman+tukey(0,875)
36 743 409 connes+kaiser_bessel
36 743 417 kaiser_bessel+connes
36 743 477 tukey(0,5)+hamming
36 743 488 hamming+tukey(0,5)
36 743 638 tukey(0,125)+gauss(0,5)
36 743 644 gauss(0,5)+tukey(0,125)
36 743 696 tukey(0,375)+tukey(0,75)
36 743 698 tukey(0,75)+tukey(0,375)
36 743 733 rectangle+triangle
36 743 741 kaiser_bessel+flattop
36 743 752 triangle+rectangle
36 743 755 gauss(0,4375)+blackman
36 743 761 blackman+gauss(0,4375)
36 743 771 flattop+kaiser_bessel
36 743 841 bartlett_hann+blackman_harris_4term_92db
36 743 855 blackman_harris_4term_92db+bartlett_hann
36 743 909 bartlett_hann+nuttall
36 743 931 nuttall+bartlett_hann
36 743 957 gauss(0,4375)+tukey(0,5)
36 743 957 tukey(0,5)+gauss(0,4375)
36 744 311 blackman+hamming
36 744 311 hamming+blackman
36 744 458 rectangle+tukey(0,75)
36 744 470 tukey(0,75)+rectangle
36 744 590 gauss(0,375)+blackman_harris_4term_92db
36 744 615 blackman_harris_4term_92db+gauss(0,375)
36 744 833 tukey(0,75)+gauss(0,375)
36 744 867 gauss(0,375)+tukey(0,75)
36 744 918 blackman+connes
36 744 923 connes+blackman
36 744 979 gauss(0,5)+gauss(0,375)
36 745 006 gauss(0,375)+gauss(0,5)
36 745 015 bartlett_hann+gauss(0,125)
36 745 054 gauss(0,125)+bartlett_hann
36 745 192 gauss(0,375)+nuttall
36 745 212 nuttall+gauss(0,375)
36 745 263 bartlett_hann+kaiser_bessel
36 745 279 kaiser_bessel+bartlett_hann
36 745 539 blackman+gauss(0,25)
36 745 572 gauss(0,25)+blackman
36 745 921 tukey(0,25)+tukey(0,625)
36 745 943 tukey(0,625)+tukey(0,25)
36 746 004 bartlett_hann+blackman
36 746 032 blackman+bartlett_hann
36 746 199 tukey(0,5)+triangle
36 746 213 triangle+tukey(0,5)
36 746 403 hann+kaiser_bessel
36 746 416 kaiser_bessel+hann
36 746 514 tukey(0,25)+gauss(0,5)
36 746 521 gauss(0,5)+tukey(0,25)
36 746 552 gauss(0,25)+gauss(0,0625)
36 746 604 gauss(0,0625)+gauss(0,25)
36 746 684 welch+connes
36 746 695 connes+welch
36 746 933 welch+tukey(0,875)
36 746 934 tukey(0,875)+welch
36 746 997 tukey(0,625)+connes
36 747 017 connes+tukey(0,625)
36 747 062 tukey(0,625)+tukey(0,875)
36 747 069 tukey(0,875)+tukey(0,625)
36 747 139 nuttall+gauss(0,1875)
36 747 173 gauss(0,1875)+nuttall
36 747 223 tukey(0,25)+bartlett
36 747 263 bartlett+tukey(0,25)
36 747 457 blackman_harris_4term_92db+gauss(0,1875)
36 747 487 gauss(0,1875)+blackman_harris_4term_92db
36 747 844 tukey(0,625)+hamming
36 747 848 hamming+tukey(0,625)
36 747 883 bartlett_hann+gauss(0,375)
36 747 911 gauss(0,375)+bartlett_hann
36 748 001 gauss(0,4375)+tukey(0,625)
36 748 007 tukey(0,625)+gauss(0,4375)
36 748 051 gauss(0,5)+hann
36 748 067 blackman+hann
36 748 077 hann+blackman
36 748 078 hann+gauss(0,5)
36 748 230 kaiser_bessel+gauss(0,25)
36 748 239 gauss(0,25)+kaiser_bessel
36 748 417 tukey(0,125)+welch
36 748 435 welch+tukey(0,125)
36 748 453 gauss(0,25)+gauss(0,125)
36 748 472 nuttall+flattop
36 748 478 tukey(0,75)+hann
36 748 490 flattop+nuttall
36 748 495 hann+tukey(0,75)
36 748 495 triangle+gauss(0,375)
36 748 511 gauss(0,375)+triangle
36 748 530 gauss(0,125)+gauss(0,25)
36 748 544 tukey(0,875)+gauss(0,375)
36 748 569 gauss(0,375)+tukey(0,875)
36 748 734 blackman_harris_4term_92db+flattop
36 748 765 flattop+blackman_harris_4term_92db
36 748 959 kaiser_bessel+gauss(0,375)
36 748 960 gauss(0,375)+kaiser_bessel
36 748 996 bartlett_hann+hann
36 749 016 hann+bartlett_hann
36 749 129 tukey(0,75)+tukey(0,5)
36 749 136 tukey(0,5)+tukey(0,75)
36 749 198 gauss(0,4375)+gauss(0,375)
36 749 217 gauss(0,375)+gauss(0,4375)
36 749 264 welch+hamming
36 749 268 bartlett_hann+tukey(0,875)
36 749 277 hamming+welch
36 749 278 tukey(0,875)+bartlett_hann
36 749 495 rectangle+tukey(0,625)
36 749 511 tukey(0,625)+rectangle
36 749 605 hamming+gauss(0,375)
36 749 622 gauss(0,375)+hamming
36 749 779 welch+gauss(0,4375)
36 749 783 gauss(0,4375)+welch
36 749 816 bartlett_hann+tukey(0,625)
36 749 820 tukey(0,625)+bartlett_hann
36 749 830 blackman+blackman_harris_4term_92db
36 749 866 blackman_harris_4term_92db+blackman
36 749 956 gauss(0,5)+tukey(0,375)
36 749 966 tukey(0,375)+gauss(0,5)
36 749 998 triangle+tukey(0,625)
36 750 009 tukey(0,625)+triangle
36 750 179 connes+gauss(0,375)
36 750 203 gauss(0,375)+connes
36 750 224 blackman+nuttall
36 750 241 nuttall+blackman
36 750 299 bartlett_hann+connes
36 750 308 bartlett_hann+tukey(0,75)
36 750 310 tukey(0,75)+bartlett_hann
36 750 316 connes+bartlett_hann
36 750 430 blackman+gauss(0,375)
36 750 444 gauss(0,375)+blackman
36 751 076 triangle+hann
36 751 100 hann+triangle
36 751 498 tukey(0,375)+tukey(0,625)
36 751 507 tukey(0,625)+tukey(0,375)
36 751 565 gauss(0,5)+tukey(0,875)
36 751 569 tukey(0,875)+gauss(0,5)
36 751 671 welch+triangle
36 751 683 triangle+welch
36 751 691 rectangle+gauss(0,0625)
36 751 715 bartlett_hann+hamming
36 751 723 hamming+bartlett_hann
36 751 743 tukey(0,125)+tukey(0,5)
36 751 753 tukey(0,5)+tukey(0,125)
36 751 783 gauss(0,0625)+rectangle
36 752 044 gauss(0,5)+connes
36 752 044 tukey(0,5)+bartlett_hann
36 752 051 bartlett_hann+tukey(0,5)
36 752 069 connes+gauss(0,5)
36 752 135 tukey(0,75)+gauss(0,4375)
36 752 148 gauss(0,4375)+tukey(0,75)
36 752 149 kaiser_bessel+blackman_harris_4term_92db
36 752 152 bartlett_hann+gauss(0,4375)
36 752 152 blackman_harris_4term_92db+kaiser_bessel
36 752 162 gauss(0,4375)+bartlett_hann
36 752 238 gauss(0,4375)+hann
36 752 269 hann+gauss(0,4375)
36 752 332 tukey(0,25)+welch
36 752 339 welch+tukey(0,25)
36 752 370 triangle+tukey(0,875)
36 752 370 tukey(0,875)+triangle
36 752 378 tukey(0,875)+hann
36 752 401 hann+tukey(0,875)
36 752 406 hamming+tukey(0,75)
36 752 407 tukey(0,75)+hamming
36 752 485 kaiser_bessel+nuttall
36 752 501 nuttall+kaiser_bessel
36 752 551 nuttall+gauss(0,25)
36 752 611 gauss(0,25)+nuttall
36 752 618 tukey(0,75)+connes
36 752 641 connes+tukey(0,75)
36 752 767 gauss(0,5)+tukey(0,5)
36 752 767 tukey(0,5)+gauss(0,5)
36 752 775 gauss(0,375)+hann
36 752 776 hann+gauss(0,375)
36 752 820 bartlett_hann+triangle
36 752 828 triangle+bartlett_hann
36 752 871 hamming+hann
36 752 900 hann+hamming
36 752 954 tukey(0,75)+tukey(0,875)
36 752 974 tukey(0,875)+tukey(0,75)
36 753 089 blackman_harris_4term_92db+gauss(0,25)
36 753 127 gauss(0,25)+blackman_harris_4term_92db
36 753 127 tukey(0,75)+triangle
36 753 133 triangle+tukey(0,75)
36 753 177 tukey(0,875)+gauss(0,4375)
36 753 190 gauss(0,4375)+tukey(0,875)
36 753 191 tukey(0,75)+welch
36 753 198 welch+tukey(0,75)
36 753 522 gauss(0,25)+gauss(0,1875)
36 753 545 gauss(0,1875)+gauss(0,25)
36 753 743 rectangle+gauss(0,5)
36 753 756 gauss(0,5)+rectangle
36 753 803 hann+connes
36 753 809 connes+hann
36 753 971 blackman+kaiser_bessel
36 753 987 triangle+connes
36 753 991 kaiser_bessel+blackman
36 753 997 connes+triangle
36 754 164 tukey(0,375)+bartlett_hann
36 754 165 bartlett_hann+tukey(0,375)
36 754 183 gauss(0,5)+tukey(0,625)
36 754 196 tukey(0,625)+gauss(0,5)
36 754 272 hamming+tukey(0,875)
36 754 274 tukey(0,75)+tukey(0,625)
36 754 274 tukey(0,875)+hamming
36 754 283 tukey(0,625)+tukey(0,75)
36 754 604 bartlett_hann+gauss(0,0625)
36 754 616 tukey(0,75)+gauss(0,5)
36 754 637 gauss(0,5)+tukey(0,75)
36 754 676 gauss(0,0625)+bartlett_hann
36 754 704 gauss(0,25)+flattop
36 754 711 flattop+gauss(0,25)
36 754 889 gauss(0,4375)+connes
36 754 890 connes+gauss(0,4375)
36 754 913 gauss(0,5)+hamming
36 754 915 hamming+gauss(0,5)
36 755 310 gauss(0,5)+gauss(0,4375)
36 755 327 gauss(0,4375)+gauss(0,5)
36 755 661 rectangle+welch
36 755 676 welch+rectangle
36 755 724 connes+tukey(0,875)
36 755 727 tukey(0,875)+connes
36 755 733 hamming+connes
36 755 736 connes+hamming
36 755 993 flattop+gauss(0,0625)
36 756 039 gauss(0,0625)+flattop
36 756 098 nuttall+blackman_harris_4term_92db
36 756 101 welch+bartlett_hann
36 756 110 bartlett_hann+welch
36 756 112 blackman_harris_4term_92db+nuttall
36 756 236 gauss(0,5)+triangle
36 756 260 triangle+gauss(0,5)
36 756 314 triangle+hamming
36 756 315 hamming+triangle
36 756 363 tukey(0,125)+bartlett
36 756 396 bartlett+tukey(0,125)
36 756 428 tukey(0,25)+tukey(0,5)
36 756 442 tukey(0,5)+tukey(0,25)
36 756 623 tukey(0,375)+welch
36 756 625 welch+tukey(0,375)
36 756 982 gauss(0,4375)+triangle
36 756 986 triangle+gauss(0,4375)
36 757 368 tukey(0,625)+tukey(0,5)
36 757 370 tukey(0,5)+tukey(0,625)
36 757 776 gauss(0,1875)+gauss(0,0625)
36 757 829 gauss(0,0625)+gauss(0,1875)
36 757 887 hamming+gauss(0,4375)
36 757 897 gauss(0,4375)+hamming
36 758 207 welch+tukey(0,625)
36 758 213 tukey(0,625)+welch
36 758 605 flattop+gauss(0,125)
36 758 649 rectangle+tukey(0,5)
36 758 661 gauss(0,125)+flattop
36 758 670 tukey(0,5)+rectangle
36 758 794 tukey(0,25)+bartlett_hann
36 758 802 bartlett_hann+tukey(0,25)
36 759 701 bartlett_hann+gauss(0,5)
36 759 705 gauss(0,5)+bartlett_hann
36 759 749 tukey(0,5)+welch
36 759 757 welch+tukey(0,5)
36 759 891 gauss(0,5)+welch
36 759 900 welch+gauss(0,5)
36 760 731 gauss(0,1875)+gauss(0,125)
36 760 778 gauss(0,125)+gauss(0,1875)
36 762 191 tukey(0,375)+tukey(0,5)
36 762 197 tukey(0,5)+tukey(0,375)
36 763 170 flattop+gauss(0,1875)
36 763 177 gauss(0,1875)+flattop
36 763 686 tukey(0,375)+tukey(0,125)
36 763 692 tukey(0,125)+tukey(0,375)
36 763 956 gauss(0,375)+gauss(0,375)
36 764 242 blackman+blackman
36 764 478 hann+hann
36 764 535 kaiser_bessel+kaiser_bessel
36 764 854 tukey(0,875)+tukey(0,875)
36 765 120 nuttall+nuttall
36 765 571 blackman_harris_4term_92db+blackman_harris_4term_92db
36 765 575 connes+connes
36 766 043 tukey(0,125)+bartlett_hann
36 766 049 bartlett_hann+tukey(0,125)
36 766 622 hamming+hamming
36 766 939 gauss(0,4375)+gauss(0,4375)
36 767 182 gauss(0,25)+gauss(0,25)
36 767 471 tukey(0,75)+tukey(0,75)
36 767 972 triangle+triangle
36 768 696 rectangle+tukey(0,375)
36 768 701 tukey(0,375)+rectangle
36 768 835 tukey(0,25)+tukey(0,375)
36 768 837 tukey(0,375)+tukey(0,25)
36 769 556 tukey(0,625)+tukey(0,625)
36 773 165 flattop+flattop
36 773 403 gauss(0,125)+gauss(0,0625)
36 773 427 gauss(0,0625)+gauss(0,125)
36 773 809 gauss(0,1875)+gauss(0,1875)
36 774 558 welch+welch
36 774 874 tukey(0,5)+tukey(0,5)
36 775 806 gauss(0,5)+gauss(0,5)
36 778 840 tukey(0,25)+tukey(0,125)
36 778 846 tukey(0,125)+tukey(0,25)
36 781 086 tukey(0,375)+tukey(0,375)
36 782 123 rectangle+tukey(0,25)
36 782 125 tukey(0,25)+rectangle
36 784 004 gauss(0,125)+gauss(0,125)
36 790 281 tukey(0,25)+tukey(0,25)
36 798 188 tukey(0,125)+rectangle
36 798 191 rectangle+tukey(0,125)
36 802 618 tukey(0,125)+tukey(0,125)
36 811 137 gauss(0,0625)+gauss(0,0625)
36 862 072 rectangle+bartlett_hann
36 862 087 bartlett_hann+rectangle
36 864 523 rectangle+bartlett
36 864 557 bartlett+rectangle
36 878 188 bartlett_hann+bartlett
36 878 214 bartlett+bartlett_hann
36 913 131 bartlett_hann+bartlett_hann
36 946 901 rectangle+rectangle
36 953 688 bartlett+bartlett


Improved FLAC encoder

Reply #56
I would normall use Excel to do this, as a quick and easy copy'n'paste kinda way.  Paste the text into a new sheet and then use "Data" > "Sort" (I think it is).

If yo are happy with the command line then you could use a command from Egor's batch file:

TYPE <unsorted file> | SORT > <sorted file>

e.g.:

TYPE report.txt | SORT > sorted.txt
I'm on a horse.

Improved FLAC encoder

Reply #57
Ah I see now. Thanks a lot . Well, anyways here are the results:

Code: [Select]
Porcupine Tree - Trains
Rock with a few acoustic parts

Original wav: 62,873,708


45,455,497 bartlett+gauss(0.125).flac
45,455,497 gauss(0.125)+bartlett.flac
45,455,679 bartlett+flattop.flac
45,455,679 flattop+bartlett.flac
45,457,153 bartlett+gauss(0.1875).flac
45,457,154 gauss(0.1875)+bartlett.flac
45,462,674 bartlett+gauss(0.25).flac
45,462,677 gauss(0.25)+bartlett.flac
45,463,382 bartlett+gauss(0.0625).flac
45,463,383 gauss(0.0625)+bartlett.flac
45,466,244 tukey(0.125)+gauss(0.125).flac
45,466,245 gauss(0.125)+tukey(0.125).flac
45,467,336 tukey(0.25)+gauss(0.125).flac
45,467,337 gauss(0.125)+tukey(0.25).flac
45,467,933 bartlett+blackman_harris_4term_92db.flac
45,467,933 blackman_harris_4term_92db+bartlett.flac
45,468,307 tukey(0.375)+gauss(0.125).flac
45,468,308 gauss(0.125)+tukey(0.375).flac
45,468,547 gauss(0.0625)+tukey(0.375).flac
45,468,549 tukey(0.375)+gauss(0.0625).flac
45,468,759 tukey(0.25)+gauss(0.0625).flac
45,468,763 gauss(0.0625)+tukey(0.25).flac
45,468,838 bartlett+nuttall.flac
45,468,842 nuttall+bartlett.flac
45,469,180 gauss(0.0625)+tukey(0.125).flac
45,469,180 tukey(0.125)+gauss(0.0625).flac
45,469,437 tukey(0.5)+gauss(0.0625).flac
45,469,439 gauss(0.0625)+tukey(0.5).flac
45,469,613 flattop+tukey(0.125).flac
45,469,614 tukey(0.125)+flattop.flac
45,470,366 tukey(0.5)+gauss(0.125).flac
45,470,373 gauss(0.125)+tukey(0.5).flac
45,471,165 tukey(0.625)+gauss(0.0625).flac
45,471,166 gauss(0.0625)+tukey(0.625).flac
45,471,514 tukey(0.125)+gauss(0.1875).flac
45,471,516 gauss(0.1875)+tukey(0.125).flac
45,471,671 tukey(0.25)+flattop.flac
45,471,681 flattop+tukey(0.25).flac
45,472,911 tukey(0.75)+gauss(0.0625).flac
45,472,912 gauss(0.0625)+tukey(0.75).flac
45,473,521 tukey(0.625)+gauss(0.125).flac
45,473,524 gauss(0.125)+tukey(0.625).flac
45,473,652 gauss(0.1875)+tukey(0.25).flac
45,473,653 tukey(0.25)+gauss(0.1875).flac
45,473,955 flattop+tukey(0.375).flac
45,473,955 tukey(0.375)+flattop.flac
45,474,635 gauss(0.0625)+tukey(0.875).flac
45,474,642 tukey(0.875)+gauss(0.0625).flac
45,475,176 gauss(0.0625)+welch.flac
45,475,176 welch+gauss(0.0625).flac
45,475,441 bartlett+kaiser_bessel.flac
45,475,441 kaiser_bessel+bartlett.flac
45,475,522 gauss(0.1875)+tukey(0.375).flac
45,475,524 tukey(0.375)+gauss(0.1875).flac
45,476,238 gauss(0.0625)+connes.flac
45,476,239 connes+gauss(0.0625).flac
45,476,371 gauss(0.125)+tukey(0.75).flac
45,476,373 tukey(0.75)+gauss(0.125).flac
45,477,005 gauss(0.125)+welch.flac
45,477,006 welch+gauss(0.125).flac
45,477,022 tukey(0.5)+flattop.flac
45,477,023 flattop+tukey(0.5).flac
45,477,196 gauss(0.0625)+hann.flac
45,477,196 hann+gauss(0.0625).flac
45,477,249 gauss(0.0625)+hamming.flac
45,477,256 hamming+gauss(0.0625).flac
45,478,243 gauss(0.0625)+gauss(0.4375).flac
45,478,249 gauss(0.4375)+gauss(0.0625).flac
45,478,473 blackman+bartlett.flac
45,478,475 bartlett+blackman.flac
45,478,574 tukey(0.5)+gauss(0.1875).flac
45,478,579 gauss(0.1875)+tukey(0.5).flac
45,478,892 gauss(0.375)+gauss(0.0625).flac
45,478,896 gauss(0.0625)+gauss(0.375).flac
45,478,897 gauss(0.0625)+triangle.flac
45,478,897 triangle+gauss(0.0625).flac
45,479,471 tukey(0.875)+gauss(0.125).flac
45,479,473 gauss(0.125)+tukey(0.875).flac
45,479,496 gauss(0.5)+gauss(0.0625).flac
45,479,497 gauss(0.0625)+gauss(0.5).flac
45,480,040 gauss(0.0625)+blackman.flac
45,480,041 blackman+gauss(0.0625).flac
45,480,293 flattop+rectangle.flac
45,480,293 rectangle+flattop.flac
45,480,334 rectangle+gauss(0.125).flac
45,480,337 gauss(0.125)+rectangle.flac
45,480,827 gauss(0.25)+tukey(0.125).flac
45,480,828 tukey(0.125)+gauss(0.25).flac
45,481,138 gauss(0.125)+connes.flac
45,481,142 connes+gauss(0.125).flac
45,481,149 gauss(0.0625)+kaiser_bessel.flac
45,481,153 kaiser_bessel+gauss(0.0625).flac
45,481,366 flattop+tukey(0.625).flac
45,481,368 tukey(0.625)+flattop.flac
45,482,029 hamming+gauss(0.125).flac
45,482,035 gauss(0.125)+hamming.flac
45,482,337 gauss(0.1875)+rectangle.flac
45,482,340 rectangle+gauss(0.1875).flac
45,482,350 gauss(0.125)+gauss(0.5).flac
45,482,353 gauss(0.5)+gauss(0.125).flac
45,482,659 tukey(0.625)+gauss(0.1875).flac
45,482,664 gauss(0.1875)+tukey(0.625).flac
45,482,888 gauss(0.125)+gauss(0.4375).flac
45,482,892 gauss(0.4375)+gauss(0.125).flac
45,482,919 gauss(0.125)+hann.flac
45,482,919 hann+gauss(0.125).flac
45,483,155 gauss(0.125)+triangle.flac
45,483,155 triangle+gauss(0.125).flac
45,483,719 gauss(0.25)+tukey(0.25).flac
45,483,722 tukey(0.25)+gauss(0.25).flac
45,483,728 gauss(0.0625)+nuttall.flac
45,483,733 nuttall+gauss(0.0625).flac
45,483,965 blackman_harris_4term_92db+gauss(0.0625).flac
45,483,968 gauss(0.0625)+blackman_harris_4term_92db.flac
45,484,361 flattop+welch.flac
45,484,362 welch+flattop.flac
45,485,344 gauss(0.375)+gauss(0.125).flac
45,485,347 gauss(0.125)+gauss(0.375).flac
45,485,633 tukey(0.75)+flattop.flac
45,485,637 flattop+tukey(0.75).flac
45,485,717 welch+gauss(0.1875).flac
45,485,719 gauss(0.1875)+welch.flac
45,486,342 tukey(0.75)+gauss(0.1875).flac
45,486,344 gauss(0.1875)+tukey(0.75).flac
45,486,867 gauss(0.25)+tukey(0.375).flac
45,486,867 tukey(0.375)+gauss(0.25).flac
45,487,735 gauss(0.125)+blackman.flac
45,487,739 blackman+gauss(0.125).flac
45,488,456 gauss(0.0625)+gauss(0.25).flac
45,488,457 gauss(0.25)+gauss(0.0625).flac
45,489,377 tukey(0.125)+blackman_harris_4term_92db.flac
45,489,378 blackman_harris_4term_92db+tukey(0.125).flac
45,489,416 gauss(0.125)+kaiser_bessel.flac
45,489,424 kaiser_bessel+gauss(0.125).flac
45,489,658 rectangle+gauss(0.25).flac
45,489,660 gauss(0.25)+rectangle.flac
45,489,674 gauss(0.0625)+rectangle.flac
45,489,676 rectangle+gauss(0.0625).flac
45,490,154 tukey(0.875)+flattop.flac
45,490,156 flattop+tukey(0.875).flac
45,490,243 flattop+gauss(0.5).flac
45,490,244 gauss(0.5)+flattop.flac
45,490,360 tukey(0.875)+gauss(0.1875).flac
45,490,363 gauss(0.1875)+tukey(0.875).flac
45,490,459 tukey(0.125)+nuttall.flac
45,490,463 nuttall+tukey(0.125).flac
45,490,538 gauss(0.25)+tukey(0.5).flac
45,490,542 tukey(0.5)+gauss(0.25).flac
45,491,043 bartlett+gauss(0.375).flac
45,491,043 gauss(0.375)+bartlett.flac
45,491,517 gauss(0.5)+gauss(0.1875).flac
45,491,521 gauss(0.1875)+gauss(0.5).flac
45,491,708 connes+flattop.flac
45,491,712 flattop+connes.flac
45,492,042 flattop+hamming.flac
45,492,042 hamming+flattop.flac
45,492,067 connes+gauss(0.1875).flac
45,492,071 gauss(0.1875)+connes.flac
45,492,492 flattop+triangle.flac
45,492,493 triangle+flattop.flac
45,492,565 gauss(0.1875)+hamming.flac
45,492,565 hamming+gauss(0.1875).flac
45,492,781 gauss(0.4375)+flattop.flac
45,492,788 flattop+gauss(0.4375).flac
45,492,952 blackman_harris_4term_92db+tukey(0.25).flac
45,492,958 tukey(0.25)+blackman_harris_4term_92db.flac
45,493,084 nuttall+gauss(0.125).flac
45,493,085 gauss(0.125)+nuttall.flac
45,493,469 gauss(0.1875)+triangle.flac
45,493,471 triangle+gauss(0.1875).flac
45,493,521 gauss(0.4375)+gauss(0.1875).flac
45,493,534 gauss(0.1875)+gauss(0.4375).flac
45,493,576 bartlett+hann.flac
45,493,582 hann+bartlett.flac
45,493,591 gauss(0.125)+blackman_harris_4term_92db.flac
45,493,592 blackman_harris_4term_92db+gauss(0.125).flac
45,493,823 bartlett_hann+gauss(0.125).flac
45,493,824 gauss(0.125)+bartlett_hann.flac
45,493,982 tukey(0.25)+nuttall.flac
45,493,986 nuttall+tukey(0.25).flac
45,494,566 gauss(0.1875)+hann.flac
45,494,567 hann+gauss(0.1875).flac
45,494,658 flattop+hann.flac
45,494,661 hann+flattop.flac
45,495,439 tukey(0.625)+gauss(0.25).flac
45,495,443 gauss(0.25)+tukey(0.625).flac
45,495,671 flattop+gauss(0.0625).flac
45,495,676 gauss(0.0625)+flattop.flac
45,495,728 gauss(0.0625)+bartlett_hann.flac
45,495,734 bartlett_hann+gauss(0.0625).flac
45,496,520 blackman_harris_4term_92db+tukey(0.375).flac
45,496,522 tukey(0.375)+blackman_harris_4term_92db.flac
45,497,022 rectangle+blackman_harris_4term_92db.flac
45,497,023 blackman_harris_4term_92db+rectangle.flac
45,497,589 gauss(0.1875)+gauss(0.375).flac
45,497,590 gauss(0.375)+gauss(0.1875).flac
45,497,705 nuttall+tukey(0.375).flac
45,497,713 tukey(0.375)+nuttall.flac
45,497,723 gauss(0.375)+flattop.flac
45,497,727 flattop+gauss(0.375).flac
45,498,052 nuttall+rectangle.flac
45,498,052 rectangle+nuttall.flac
45,498,124 gauss(0.25)+welch.flac
45,498,125 welch+gauss(0.25).flac
45,498,636 flattop+bartlett_hann.flac
45,498,638 bartlett_hann+flattop.flac
45,499,417 bartlett+tukey(0.875).flac
45,499,417 tukey(0.875)+bartlett.flac
45,499,606 gauss(0.125)+gauss(0.25).flac
45,499,607 gauss(0.25)+gauss(0.125).flac
45,499,789 bartlett_hann+gauss(0.1875).flac
45,499,791 gauss(0.1875)+bartlett_hann.flac
45,500,046 bartlett+connes.flac
45,500,048 connes+bartlett.flac
45,500,213 gauss(0.25)+tukey(0.75).flac
45,500,214 tukey(0.125)+kaiser_bessel.flac
45,500,216 tukey(0.75)+gauss(0.25).flac
45,500,221 kaiser_bessel+tukey(0.125).flac
45,500,446 gauss(0.0625)+gauss(0.1875).flac
45,500,448 gauss(0.1875)+gauss(0.0625).flac
45,500,893 blackman_harris_4term_92db+tukey(0.5).flac
45,500,902 tukey(0.5)+blackman_harris_4term_92db.flac
45,501,221 gauss(0.1875)+blackman.flac
45,501,224 blackman+gauss(0.1875).flac
45,501,984 nuttall+tukey(0.5).flac
45,501,986 tukey(0.5)+nuttall.flac
45,502,894 blackman+flattop.flac
45,502,898 flattop+blackman.flac
45,503,008 gauss(0.1875)+kaiser_bessel.flac
45,503,009 kaiser_bessel+gauss(0.1875).flac
45,504,135 tukey(0.25)+kaiser_bessel.flac
45,504,142 kaiser_bessel+tukey(0.25).flac
45,504,471 gauss(0.5)+gauss(0.25).flac
45,504,478 gauss(0.25)+gauss(0.5).flac
45,504,946 blackman+tukey(0.125).flac
45,504,946 tukey(0.125)+blackman.flac
45,505,176 gauss(0.25)+tukey(0.875).flac
45,505,177 tukey(0.875)+gauss(0.25).flac
45,505,301 flattop+kaiser_bessel.flac
45,505,310 kaiser_bessel+flattop.flac
45,506,357 blackman_harris_4term_92db+tukey(0.625).flac
45,506,360 tukey(0.625)+blackman_harris_4term_92db.flac
45,506,825 gauss(0.25)+connes.flac
45,506,829 connes+gauss(0.25).flac
45,506,875 kaiser_bessel+rectangle.flac
45,506,875 rectangle+kaiser_bessel.flac
45,506,993 triangle+gauss(0.25).flac
45,506,998 gauss(0.25)+triangle.flac
45,507,107 hamming+gauss(0.25).flac
45,507,110 gauss(0.25)+hamming.flac
45,507,468 bartlett+hamming.flac
45,507,469 hamming+bartlett.flac
45,507,500 tukey(0.625)+nuttall.flac
45,507,502 nuttall+tukey(0.625).flac
45,507,821 gauss(0.4375)+gauss(0.25).flac
45,507,825 gauss(0.25)+gauss(0.4375).flac
45,507,948 gauss(0.1875)+nuttall.flac
45,507,952 nuttall+gauss(0.1875).flac
45,508,073 tukey(0.75)+bartlett.flac
45,508,075 bartlett+tukey(0.75).flac
45,508,278 tukey(0.375)+kaiser_bessel.flac
45,508,282 kaiser_bessel+tukey(0.375).flac
45,508,568 gauss(0.1875)+blackman_harris_4term_92db.flac
45,508,572 blackman_harris_4term_92db+gauss(0.1875).flac
45,508,676 welch+blackman_harris_4term_92db.flac
45,508,681 blackman_harris_4term_92db+welch.flac
45,508,891 tukey(0.25)+blackman.flac
45,508,893 blackman+tukey(0.25).flac
45,509,262 bartlett_hann+gauss(0.25).flac
45,509,265 gauss(0.25)+bartlett_hann.flac
45,509,320 gauss(0.125)+flattop.flac
45,509,326 flattop+gauss(0.125).flac
45,509,674 welch+nuttall.flac
45,509,682 nuttall+welch.flac
45,509,901 gauss(0.25)+hann.flac
45,509,906 hann+gauss(0.25).flac
45,510,401 bartlett+gauss(0.4375).flac
45,510,405 gauss(0.4375)+bartlett.flac
45,510,661 nuttall+flattop.flac
45,510,666 flattop+nuttall.flac
45,511,042 flattop+blackman_harris_4term_92db.flac
45,511,043 blackman_harris_4term_92db+flattop.flac
45,511,233 blackman+rectangle.flac
45,511,233 rectangle+blackman.flac
45,511,810 tukey(0.75)+blackman_harris_4term_92db.flac
45,511,811 blackman_harris_4term_92db+tukey(0.75).flac
45,512,337 triangle+bartlett.flac
45,512,340 bartlett+triangle.flac
45,513,038 nuttall+tukey(0.75).flac
45,513,042 tukey(0.75)+nuttall.flac
45,513,126 tukey(0.5)+kaiser_bessel.flac
45,513,127 kaiser_bessel+tukey(0.5).flac
45,513,317 blackman+tukey(0.375).flac
45,513,317 tukey(0.375)+blackman.flac
45,513,429 gauss(0.375)+gauss(0.25).flac
45,513,435 gauss(0.25)+gauss(0.375).flac
45,514,785 gauss(0.1875)+gauss(0.125).flac
45,514,787 gauss(0.125)+gauss(0.1875).flac
45,514,949 gauss(0.5)+blackman_harris_4term_92db.flac
45,514,952 blackman_harris_4term_92db+gauss(0.5).flac
45,515,934 gauss(0.1875)+gauss(0.25).flac
45,515,938 gauss(0.25)+gauss(0.1875).flac
45,516,223 gauss(0.5)+nuttall.flac
45,516,228 nuttall+gauss(0.5).flac
45,516,919 blackman_harris_4term_92db+bartlett_hann.flac
45,516,921 bartlett_hann+blackman_harris_4term_92db.flac
45,516,951 blackman_harris_4term_92db+tukey(0.875).flac
45,516,952 tukey(0.875)+blackman_harris_4term_92db.flac
45,517,194 gauss(0.25)+flattop.flac
45,517,205 flattop+gauss(0.25).flac
45,517,947 nuttall+bartlett_hann.flac
45,517,948 bartlett_hann+nuttall.flac
45,518,001 triangle+blackman_harris_4term_92db.flac
45,518,004 blackman_harris_4term_92db+triangle.flac
45,518,327 nuttall+tukey(0.875).flac
45,518,336 tukey(0.875)+nuttall.flac
45,518,500 tukey(0.5)+blackman.flac
45,518,509 blackman+tukey(0.5).flac
45,518,512 gauss(0.25)+blackman.flac
45,518,517 hamming+blackman_harris_4term_92db.flac
45,518,519 blackman+gauss(0.25).flac
45,518,520 blackman_harris_4term_92db+hamming.flac
45,518,774 blackman_harris_4term_92db+connes.flac
45,518,774 connes+blackman_harris_4term_92db.flac
45,518,946 gauss(0.0625)+gauss(0.125).flac
45,518,949 gauss(0.125)+gauss(0.0625).flac
45,519,079 blackman_harris_4term_92db+gauss(0.4375).flac
45,519,079 gauss(0.4375)+blackman_harris_4term_92db.flac
45,519,143 kaiser_bessel+tukey(0.625).flac
45,519,144 tukey(0.625)+kaiser_bessel.flac
45,519,276 bartlett+tukey(0.625).flac
45,519,279 tukey(0.625)+bartlett.flac
45,519,303 nuttall+triangle.flac
45,519,308 triangle+nuttall.flac
45,519,712 hamming+nuttall.flac
45,519,719 nuttall+hamming.flac
45,519,953 nuttall+connes.flac
45,519,960 connes+nuttall.flac
45,520,281 gauss(0.4375)+nuttall.flac
45,520,288 nuttall+gauss(0.4375).flac
45,520,792 welch+kaiser_bessel.flac
45,520,797 kaiser_bessel+welch.flac
45,521,009 kaiser_bessel+gauss(0.25).flac
45,521,017 gauss(0.25)+kaiser_bessel.flac
45,522,120 blackman_harris_4term_92db+hann.flac
45,522,120 hann+blackman_harris_4term_92db.flac
45,522,413 tukey(0.125)+gauss(0.375).flac
45,522,418 gauss(0.375)+tukey(0.125).flac
45,523,221 hann+nuttall.flac
45,523,226 nuttall+hann.flac
45,524,751 blackman+tukey(0.625).flac
45,524,755 tukey(0.625)+blackman.flac
45,524,809 kaiser_bessel+tukey(0.75).flac
45,524,812 tukey(0.75)+kaiser_bessel.flac
45,525,634 blackman_harris_4term_92db+gauss(0.375).flac
45,525,638 gauss(0.375)+blackman_harris_4term_92db.flac
45,525,912 gauss(0.1875)+flattop.flac
45,525,913 flattop+gauss(0.1875).flac
45,526,060 blackman+welch.flac
45,526,064 welch+blackman.flac
45,526,841 nuttall+gauss(0.25).flac
45,526,847 gauss(0.25)+nuttall.flac
45,526,892 nuttall+gauss(0.375).flac
45,526,895 gauss(0.375)+nuttall.flac
45,526,943 kaiser_bessel+bartlett_hann.flac
45,526,946 bartlett_hann+kaiser_bessel.flac
45,527,198 gauss(0.375)+tukey(0.25).flac
45,527,198 tukey(0.25)+gauss(0.375).flac
45,527,403 gauss(0.5)+kaiser_bessel.flac
45,527,408 kaiser_bessel+gauss(0.5).flac
45,527,439 rectangle+gauss(0.375).flac
45,527,444 gauss(0.375)+rectangle.flac
45,527,670 gauss(0.25)+blackman_harris_4term_92db.flac
45,527,672 blackman_harris_4term_92db+gauss(0.25).flac
45,528,908 tukey(0.125)+hann.flac
45,528,914 hann+tukey(0.125).flac
45,530,119 bartlett+gauss(0.5).flac
45,530,119 gauss(0.5)+bartlett.flac
45,530,483 kaiser_bessel+tukey(0.875).flac
45,530,485 tukey(0.875)+kaiser_bessel.flac
45,530,587 tukey(0.75)+blackman.flac
45,530,595 blackman+tukey(0.75).flac
45,530,668 triangle+kaiser_bessel.flac
45,530,669 kaiser_bessel+triangle.flac
45,531,165 blackman+bartlett_hann.flac
45,531,168 bartlett_hann+blackman.flac
45,531,371 blackman_harris_4term_92db+blackman.flac
45,531,376 blackman+blackman_harris_4term_92db.flac
45,531,528 hamming+kaiser_bessel.flac
45,531,533 kaiser_bessel+hamming.flac
45,531,791 bartlett+tukey(0.5).flac
45,531,791 tukey(0.5)+bartlett.flac
45,531,921 kaiser_bessel+gauss(0.4375).flac
45,531,926 gauss(0.4375)+kaiser_bessel.flac
45,532,059 gauss(0.375)+tukey(0.375).flac
45,532,061 tukey(0.375)+gauss(0.375).flac
45,532,072 connes+kaiser_bessel.flac
45,532,074 kaiser_bessel+connes.flac
45,532,100 welch+bartlett.flac
45,532,101 bartlett+welch.flac
45,532,740 blackman+nuttall.flac
45,532,745 nuttall+blackman.flac
45,532,785 gauss(0.5)+blackman.flac
45,532,791 blackman+gauss(0.5).flac
45,533,428 rectangle+hann.flac
45,533,430 hann+rectangle.flac
45,533,770 hann+tukey(0.25).flac
45,533,770 tukey(0.25)+hann.flac
45,534,022 kaiser_bessel+blackman_harris_4term_92db.flac
45,534,036 blackman_harris_4term_92db+kaiser_bessel.flac
45,534,770 flattop+flattop.flac
45,535,462 nuttall+kaiser_bessel.flac
45,535,470 kaiser_bessel+nuttall.flac
45,535,737 kaiser_bessel+hann.flac
45,535,748 hann+kaiser_bessel.flac
45,536,336 blackman+triangle.flac
45,536,340 triangle+blackman.flac
45,536,389 tukey(0.875)+blackman.flac
45,536,391 blackman+tukey(0.875).flac
45,537,111 hamming+blackman.flac
45,537,120 blackman+hamming.flac
45,537,254 gauss(0.1875)+gauss(0.1875).flac
45,537,626 blackman+gauss(0.4375).flac
45,537,627 gauss(0.4375)+blackman.flac
45,537,801 gauss(0.375)+tukey(0.5).flac
45,537,805 tukey(0.5)+gauss(0.375).flac
45,537,991 connes+blackman.flac
45,537,992 blackman+connes.flac
45,539,033 tukey(0.375)+hann.flac
45,539,036 hann+tukey(0.375).flac
45,539,087 kaiser_bessel+gauss(0.375).flac
45,539,090 gauss(0.375)+kaiser_bessel.flac
45,539,483 nuttall+blackman_harris_4term_92db.flac
45,539,505 blackman_harris_4term_92db+nuttall.flac
45,539,536 tukey(0.875)+tukey(0.125).flac
45,539,537 tukey(0.125)+tukey(0.875).flac
45,539,562 tukey(0.125)+connes.flac
45,539,570 connes+tukey(0.125).flac
45,540,013 gauss(0.25)+gauss(0.25).flac
45,541,184 gauss(0.125)+gauss(0.125).flac
45,541,625 hann+blackman.flac
45,541,631 blackman+hann.flac
45,543,255 connes+rectangle.flac
45,543,255 rectangle+connes.flac
45,543,291 tukey(0.875)+rectangle.flac
45,543,295 rectangle+tukey(0.875).flac
45,544,215 tukey(0.625)+gauss(0.375).flac
45,544,220 gauss(0.375)+tukey(0.625).flac
45,544,569 tukey(0.25)+connes.flac
45,544,572 connes+tukey(0.25).flac
45,544,904 gauss(0.375)+blackman.flac
45,544,907 blackman+gauss(0.375).flac
45,544,978 tukey(0.875)+tukey(0.25).flac
45,544,979 tukey(0.25)+tukey(0.875).flac
45,544,991 tukey(0.5)+hann.flac
45,544,994 hann+tukey(0.5).flac
45,545,083 blackman_harris_4term_92db+blackman_harris_4term_92db.flac
45,545,289 blackman+kaiser_bessel.flac
45,545,290 kaiser_bessel+blackman.flac
45,545,620 gauss(0.375)+welch.flac
45,545,621 welch+gauss(0.375).flac
45,545,872 nuttall+nuttall.flac
45,546,507 bartlett+tukey(0.375).flac
45,546,509 tukey(0.375)+bartlett.flac
45,546,904 gauss(0.375)+bartlett_hann.flac
45,546,905 bartlett_hann+gauss(0.375).flac
45,548,248 hamming+tukey(0.125).flac
45,548,250 tukey(0.125)+hamming.flac
45,550,091 gauss(0.375)+tukey(0.75).flac
45,550,091 tukey(0.75)+gauss(0.375).flac
45,550,182 tukey(0.375)+connes.flac
45,550,184 connes+tukey(0.375).flac
45,550,246 bartlett_hann+hann.flac
45,550,250 hann+bartlett_hann.flac
45,550,645 tukey(0.375)+tukey(0.875).flac
45,550,646 tukey(0.875)+tukey(0.375).flac
45,551,291 tukey(0.125)+gauss(0.4375).flac
45,551,293 gauss(0.4375)+tukey(0.125).flac
45,551,399 rectangle+hamming.flac
45,551,401 hamming+rectangle.flac
45,551,881 tukey(0.625)+hann.flac
45,551,890 hann+tukey(0.625).flac
45,552,128 gauss(0.375)+gauss(0.5).flac
45,552,129 gauss(0.5)+gauss(0.375).flac
45,552,469 kaiser_bessel+kaiser_bessel.flac
45,552,834 welch+hann.flac
45,552,836 hann+welch.flac
45,553,086 hamming+tukey(0.25).flac
45,553,095 tukey(0.25)+hamming.flac
45,554,134 tukey(0.875)+bartlett_hann.flac
45,554,136 bartlett_hann+tukey(0.875).flac
45,554,641 tukey(0.125)+tukey(0.75).flac
45,554,642 tukey(0.75)+tukey(0.125).flac
45,554,770 rectangle+gauss(0.4375).flac
45,554,772 gauss(0.4375)+rectangle.flac
45,555,158 tukey(0.875)+gauss(0.375).flac
45,555,161 gauss(0.375)+tukey(0.875).flac
45,555,577 connes+bartlett_hann.flac
45,555,580 bartlett_hann+connes.flac
45,555,773 blackman+blackman.flac
45,556,076 tukey(0.125)+triangle.flac
45,556,089 gauss(0.375)+triangle.flac
45,556,089 triangle+tukey(0.125).flac
45,556,090 triangle+gauss(0.375).flac
45,556,176 tukey(0.25)+gauss(0.4375).flac
45,556,180 gauss(0.4375)+tukey(0.25).flac
45,556,686 connes+tukey(0.5).flac
45,556,689 tukey(0.5)+connes.flac
45,557,059 connes+gauss(0.375).flac
45,557,061 gauss(0.375)+connes.flac
45,557,289 tukey(0.5)+tukey(0.875).flac
45,557,290 tukey(0.875)+tukey(0.5).flac
45,557,321 rectangle+tukey(0.75).flac
45,557,326 tukey(0.75)+rectangle.flac
45,557,486 hamming+gauss(0.375).flac
45,557,492 gauss(0.375)+hamming.flac
45,557,670 gauss(0.375)+gauss(0.4375).flac
45,557,671 gauss(0.4375)+gauss(0.375).flac
45,558,252 tukey(0.75)+bartlett_hann.flac
45,558,253 bartlett_hann+tukey(0.75).flac
45,558,337 tukey(0.75)+hann.flac
45,558,341 hann+tukey(0.75).flac
45,558,364 tukey(0.375)+hamming.flac
45,558,367 hamming+tukey(0.375).flac
45,559,115 gauss(0.5)+hann.flac
45,559,117 hann+gauss(0.5).flac
45,559,474 rectangle+triangle.flac
45,559,479 triangle+rectangle.flac
45,559,504 hann+gauss(0.375).flac
45,559,517 gauss(0.375)+hann.flac
45,560,576 tukey(0.25)+tukey(0.75).flac
45,560,585 tukey(0.75)+tukey(0.25).flac
45,561,201 gauss(0.4375)+tukey(0.375).flac
45,561,202 tukey(0.375)+gauss(0.4375).flac
45,561,450 triangle+tukey(0.25).flac
45,561,450 tukey(0.25)+triangle.flac
45,561,723 gauss(0.0625)+gauss(0.0625).flac
45,562,247 triangle+hann.flac
45,562,252 hann+triangle.flac
45,562,384 bartlett+tukey(0.25).flac
45,562,385 tukey(0.25)+bartlett.flac
45,563,550 bartlett_hann+hamming.flac
45,563,550 hamming+bartlett_hann.flac
45,563,563 tukey(0.625)+connes.flac
45,563,576 connes+tukey(0.625).flac
45,563,660 bartlett_hann+tukey(0.625).flac
45,563,660 tukey(0.625)+bartlett_hann.flac
45,563,814 hamming+tukey(0.5).flac
45,563,821 tukey(0.5)+hamming.flac
45,564,155 hann+tukey(0.875).flac
45,564,155 tukey(0.875)+hann.flac
45,564,240 welch+connes.flac
45,564,243 connes+welch.flac
45,564,358 tukey(0.875)+tukey(0.625).flac
45,564,360 tukey(0.625)+tukey(0.875).flac
45,564,372 gauss(0.4375)+hann.flac
45,564,374 hann+gauss(0.4375).flac
45,564,408 hamming+hann.flac
45,564,414 hann+hamming.flac
45,564,718 tukey(0.875)+welch.flac
45,564,722 welch+tukey(0.875).flac
45,565,579 hann+connes.flac
45,565,581 connes+hann.flac
45,566,109 tukey(0.5)+gauss(0.4375).flac
45,566,118 gauss(0.4375)+tukey(0.5).flac
45,566,614 bartlett_hann+gauss(0.4375).flac
45,566,616 gauss(0.4375)+bartlett_hann.flac
45,566,911 triangle+tukey(0.375).flac
45,566,913 tukey(0.375)+triangle.flac
45,566,975 tukey(0.375)+tukey(0.75).flac
45,566,975 tukey(0.75)+tukey(0.375).flac
45,567,793 triangle+bartlett_hann.flac
45,567,797 bartlett_hann+triangle.flac
45,568,790 tukey(0.625)+hamming.flac
45,568,800 hamming+tukey(0.625).flac
45,569,121 gauss(0.375)+gauss(0.375).flac
45,569,937 bartlett_hann+tukey(0.5).flac
45,569,939 tukey(0.5)+bartlett_hann.flac
45,569,941 tukey(0.875)+triangle.flac
45,569,948 triangle+tukey(0.875).flac
45,569,948 tukey(0.625)+gauss(0.4375).flac
45,569,952 gauss(0.4375)+tukey(0.625).flac
45,570,079 connes+tukey(0.75).flac
45,570,082 tukey(0.75)+connes.flac
45,570,176 tukey(0.875)+gauss(0.5).flac
45,570,181 gauss(0.5)+tukey(0.875).flac
45,570,437 gauss(0.5)+connes.flac
45,570,438 connes+gauss(0.5).flac
45,570,569 gauss(0.4375)+tukey(0.875).flac
45,570,569 tukey(0.875)+gauss(0.4375).flac
45,571,041 tukey(0.875)+tukey(0.75).flac
45,571,048 tukey(0.75)+tukey(0.875).flac
45,571,603 hamming+tukey(0.875).flac
45,571,611 tukey(0.875)+hamming.flac
45,571,738 tukey(0.75)+gauss(0.4375).flac
45,571,742 gauss(0.4375)+tukey(0.75).flac
45,571,762 hamming+tukey(0.75).flac
45,571,762 tukey(0.75)+hamming.flac
45,571,961 triangle+connes.flac
45,571,963 connes+triangle.flac
45,572,168 triangle+tukey(0.5).flac
45,572,169 tukey(0.5)+triangle.flac
45,572,774 hamming+welch.flac
45,572,776 welch+hamming.flac
45,573,297 connes+gauss(0.4375).flac
45,573,312 gauss(0.4375)+connes.flac
45,573,338 hann+hann.flac
45,573,960 connes+tukey(0.875).flac
45,573,962 tukey(0.875)+connes.flac
45,573,963 tukey(0.75)+tukey(0.5).flac
45,573,965 tukey(0.5)+tukey(0.75).flac
45,574,226 tukey(0.125)+tukey(0.625).flac
45,574,226 tukey(0.625)+tukey(0.125).flac
45,574,266 hamming+connes.flac
45,574,274 connes+hamming.flac
45,574,813 tukey(0.75)+triangle.flac
45,574,819 triangle+tukey(0.75).flac
45,575,429 triangle+tukey(0.625).flac
45,575,433 tukey(0.625)+triangle.flac
45,575,953 welch+gauss(0.4375).flac
45,575,955 gauss(0.4375)+welch.flac
45,575,970 tukey(0.625)+rectangle.flac
45,575,973 rectangle+tukey(0.625).flac
45,578,951 bartlett_hann+tukey(0.375).flac
45,578,952 tukey(0.375)+bartlett_hann.flac
45,579,154 welch+bartlett_hann.flac
45,579,156 bartlett_hann+welch.flac
45,579,313 bartlett+tukey(0.125).flac
45,579,313 tukey(0.125)+bartlett.flac
45,579,771 gauss(0.5)+hamming.flac
45,579,777 hamming+gauss(0.5).flac
45,579,974 tukey(0.125)+gauss(0.5).flac
45,579,980 gauss(0.5)+tukey(0.125).flac
45,579,996 gauss(0.5)+tukey(0.75).flac
45,579,999 tukey(0.75)+gauss(0.5).flac
45,580,388 welch+tukey(0.75).flac
45,580,397 tukey(0.75)+welch.flac
45,580,535 triangle+hamming.flac
45,580,538 hamming+triangle.flac
45,580,634 welch+triangle.flac
45,580,635 triangle+welch.flac
45,580,799 tukey(0.625)+tukey(0.25).flac
45,580,800 tukey(0.25)+tukey(0.625).flac
45,581,012 tukey(0.875)+tukey(0.875).flac
45,581,110 connes+connes.flac
45,581,522 tukey(0.625)+tukey(0.75).flac
45,581,527 tukey(0.75)+tukey(0.625).flac
45,582,886 gauss(0.5)+gauss(0.4375).flac
45,582,887 gauss(0.4375)+gauss(0.5).flac
45,583,199 bartlett_hann+gauss(0.5).flac
45,583,201 gauss(0.5)+bartlett_hann.flac
45,583,630 gauss(0.5)+rectangle.flac
45,583,631 rectangle+gauss(0.5).flac
45,583,820 hamming+gauss(0.4375).flac
45,583,823 gauss(0.4375)+hamming.flac
45,583,882 triangle+gauss(0.4375).flac
45,583,883 gauss(0.4375)+triangle.flac
45,584,026 gauss(0.5)+tukey(0.25).flac
45,584,029 tukey(0.25)+gauss(0.5).flac
45,585,946 tukey(0.625)+gauss(0.5).flac
45,585,948 gauss(0.5)+tukey(0.625).flac
45,586,774 gauss(0.5)+triangle.flac
45,586,777 triangle+gauss(0.5).flac
45,586,948 gauss(0.5)+tukey(0.375).flac
45,586,954 tukey(0.375)+gauss(0.5).flac
45,587,710 tukey(0.625)+tukey(0.375).flac
45,587,712 tukey(0.375)+tukey(0.625).flac
45,587,774 tukey(0.5)+gauss(0.5).flac
45,587,779 gauss(0.5)+tukey(0.5).flac
45,588,965 hamming+hamming.flac
45,590,290 tukey(0.25)+bartlett_hann.flac
45,590,294 bartlett_hann+tukey(0.25).flac
45,591,888 tukey(0.125)+welch.flac
45,591,895 welch+tukey(0.125).flac
45,592,089 gauss(0.4375)+gauss(0.4375).flac
45,592,101 tukey(0.75)+tukey(0.75).flac
45,593,208 rectangle+welch.flac
45,593,214 welch+rectangle.flac
45,595,330 tukey(0.5)+tukey(0.625).flac
45,595,335 tukey(0.625)+tukey(0.5).flac
45,595,410 triangle+triangle.flac
45,595,902 tukey(0.625)+welch.flac
45,595,911 welch+tukey(0.625).flac
45,597,322 tukey(0.5)+tukey(0.125).flac
45,597,326 tukey(0.125)+tukey(0.5).flac
45,597,851 tukey(0.5)+rectangle.flac
45,597,852 rectangle+tukey(0.5).flac
45,598,199 welch+tukey(0.25).flac
45,598,200 tukey(0.25)+welch.flac
45,601,329 welch+gauss(0.5).flac
45,601,333 gauss(0.5)+welch.flac
45,603,411 tukey(0.375)+welch.flac
45,603,416 welch+tukey(0.375).flac
45,603,870 welch+tukey(0.5).flac
45,603,872 tukey(0.5)+welch.flac
45,604,161 bartlett_hann+tukey(0.125).flac
45,604,164 tukey(0.125)+bartlett_hann.flac
45,604,499 tukey(0.5)+tukey(0.25).flac
45,604,501 tukey(0.25)+tukey(0.5).flac
45,606,621 tukey(0.625)+tukey(0.625).flac
45,612,025 tukey(0.375)+tukey(0.5).flac
45,612,028 tukey(0.5)+tukey(0.375).flac
45,616,753 gauss(0.5)+gauss(0.5).flac
45,622,168 welch+welch.flac
45,623,387 tukey(0.5)+tukey(0.5).flac
45,624,348 tukey(0.375)+rectangle.flac
45,624,350 rectangle+tukey(0.375).flac
45,625,173 tukey(0.375)+tukey(0.125).flac
45,625,179 tukey(0.125)+tukey(0.375).flac
45,632,982 tukey(0.25)+tukey(0.375).flac
45,632,983 tukey(0.375)+tukey(0.25).flac
45,644,357 tukey(0.375)+tukey(0.375).flac
45,654,980 rectangle+tukey(0.25).flac
45,654,981 tukey(0.25)+rectangle.flac
45,656,919 tukey(0.25)+tukey(0.125).flac
45,656,922 tukey(0.125)+tukey(0.25).flac
45,663,280 rectangle+bartlett.flac
45,663,287 bartlett+rectangle.flac
45,663,319 bartlett+bartlett_hann.flac
45,663,324 bartlett_hann+bartlett.flac
45,668,784 tukey(0.25)+tukey(0.25).flac
45,677,586 rectangle+bartlett_hann.flac
45,677,588 bartlett_hann+rectangle.flac
45,688,235 rectangle+tukey(0.125).flac
45,688,240 tukey(0.125)+rectangle.flac
45,695,323 tukey(0.125)+tukey(0.125).flac
45,735,545 bartlett_hann+bartlett_hann.flac
45,755,221 bartlett+bartlett.flac
45,816,975 rectangle+rectangle.flac

I've noticed no one has posted any results for rap or hip-hop... would that help any?

Improved FLAC encoder

Reply #58
CLASSICAL MUSIC

I did some tests on my side, with classical music only.
Here is how I procced:
• I used the 150 short samples I'm used to test for listening tests
• I grouped them into 4 big files according to four fundamental themes: ARTIFICIAL (5 samples), ENSEMBLE (chamber, orchestral: 60 samples), SINGLE (solo instruments: 55 samples) and VOICE (30 samples).
• At the end, I used the 150 complete files (16 hours) and encoded them with the "best" presets (only for FLAC_8).


Reports are available here:
http://audiotests.free.fr/tests/2006.05/lossless_flac_CVS/

=> tukey 0,5 is close to the top, but tukey 0,375 seems to be even better on average. The "welch" mode is the most interesting non-tukey contender.


Full songs reports:

Code: [Select]
flac 1.1.2     -8      4.426.332.510   <->  634,97 kbps
flac 1.1.2.1   -8      4.347.943.455   <->  625,11 kbps
flac -8 welch          4.346.925.834   <->  624,97 kbps
flac -8 tukey 0,5      4.346.608.972   <->  624,93 kbps
flac -8 tukey 0,375    4.346.430.354   <->  624,91 kbps


The difference among these different coding methods are rather unsignificant. The improvement is great compared to 1.1.2; Garf's tuned encoder is comparable to the new CVS one.

Improved FLAC encoder

Reply #59
NB: I have just started a batch file which contains the lines:

Code: [Select]
FOR /R C:\DOS\FLAC\source %%G IN (*.wav) DO CALL C:\DOS\FLAC\flac-2a.bat -3 "%%G"
FOR /R C:\DOS\FLAC\source %%G IN (*.wav) DO CALL C:\DOS\FLAC\flac-2a.bat -4 "%%G"
FOR /R C:\DOS\FLAC\source %%G IN (*.wav) DO CALL C:\DOS\FLAC\flac-2a.bat -5 "%%G"
FOR /R C:\DOS\FLAC\source %%G IN (*.wav) DO CALL C:\DOS\FLAC\flac-2a.bat -6 "%%G"
FOR /R C:\DOS\FLAC\source %%G IN (*.wav) DO CALL C:\DOS\FLAC\flac-2a.bat -7 "%%G"
FOR /R C:\DOS\FLAC\source %%G IN (*.wav) DO CALL C:\DOS\FLAC\flac-2a.bat -8 "%%G"

This will create a report for the 28 files in all six compression levels (168 reports).  I suspect it will take some time, but hey, I am at work and the weekend is coming up.  Maybe it will have finished by monday.
Well, it was quite evident on Friday that I wouldn't get all six compressions rates by Monday, so I restarted with just -5 and -8.  It is now Monday and -8 is half way through, I think it may take another two days to complete (it's been going since 11:00 Saturday). 

I have uploaded the reports for -5.

There's just too much data to know what to do with it, however here's the winners for each file:

Code: [Select]
Compression: -5
Files ordered by compression rate (according to single pass results)

File  Best Combination
==============================
03    tukey(0.25)+hamming.flac  (~33%)
21    gauss(0.5)+connes.flac
20    tukey(0.25)+triangle.flac
08    rectangle+hamming.flac
25    tukey(0.25)+hamming.flac
24    tukey(0.5)+gauss(0.5).flac
16    tukey(0.25)+blackman_harris_4term_92db.flac
01    tukey(0.25)+triangle.flac
18    tukey(0.25)+hamming.flac
06    welch+tukey(0.25).flac
04    tukey(0.5)+flattop.flac
19    tukey(0.25)+flattop.flac  (~60%)
17    tukey(0.25)+flattop.flac
14    tukey(0.25)+flattop.flac
09    tukey(0.25)+flattop.flac
00    tukey(0.25)+gauss(0.25).flac
11    tukey(0.25)+flattop.flac
12    tukey(0.25)+flattop.flac
13    tukey(0.25)+flattop.flac
10    tukey(0.25)+hamming.flac
22    tukey(0.25)+flattop.flac
15    tukey(0.25)+flattop.flac
05    tukey(0.25)+flattop.flac
07    tukey(0.25)+nuttall.flac
23    tukey(0.25)+nuttall.flac
27    tukey(0.25)+flattop.flac
02    tukey(0.25)+flattop.flac  (~77%)
26    welch+rectangle.flac  (~81%)

Edit: Comparing the results with the one pass results, the two pass is getting between 0.014% (7.8KiB) and 0.205% (89.9KiB) improvement.  The lowest improvement (0.014%) is with the file most difficult to compress (26.wav), but it doesn't appear to necessarily follow that the easier the file is to compress the more can be shaved off (the best improvement is with the file 4th easiest to compress).

I can't remember when Josh was planning to switch from one algo to two or three, I think it was with 6, 7 and 8.  I may have to do some timing tests with those to see how much extra time it takes for such little extra compression (assuming that these settings achieve a similar improvement over one pass, I may find out on Wednesday!).
I'm on a horse.

Improved FLAC encoder

Reply #60
At the end, I used the 150 complete files (16 hours) and encoded them with the "best" presets (only for FLAC_8).
Looking at your -5 results I see hamming did well with your tests also, coming 4th, 1st, 2nd, 4th.  I have compared it to tukey(0.125), which appears to me the closest competitor for -5.  Hamming, as in my results, does better on average.

Code: [Select]
wave              hamming  tukey(0,125)
=======================================
6,716,344       4,345,404     4,344,573
100,190,540    52,286,660    52,310,338
100,415,404    44,785,043    44,789,793
57,278,004     27,427,728    27,420,738
=======================================
              128,844,835   128,865,442
                  48.694%       48.702%

I am not surprised that a lower tukey value did well at -8, considering your test corpus.  From what I could make out from my results  going too low or too high is not good all round, but generally tukey does better at -8, with the value depending on the samples.  I suggested 0.7 as that fits in more with rock and pop music.  My more quiet tracks would be happier with 0.375 also though.
I'm on a horse.

Improved FLAC encoder

Reply #61
wow, you guys are thorough!  ok, I think this should be good, I am going to start collecting the data (synthetic soul when your last -8 run is done go ahead and post it here).  I'll put the overall results here when I'm done.

Josh

Improved FLAC encoder

Reply #62
And some more results

Crowded House - Recurring Dream The Very Best Of (Full Album)
Style: Pop
Code: [Select]
Original Wav
744,048,188 Crowded House - Recurring Dream The Very Best Of.wav

Flac 1.1.2 -8 Results
472,299,817 Crowded House - Recurring Dream The Very Best Of.flac

Flac 1.1.2_CVS -8 Results
468,064,219 tukey(0.875).flac
468,066,179 gauss(0.375).flac
468,067,431 hann.flac
468,073,357 connes.flac
468,079,589 tukey(0.75).flac
468,087,184 blackman.flac
468,092,137 triangle.flac
468,093,175 kaiser_bessel.flac
468,097,023 tukey(0.625).flac
468,099,435 gauss(0.4375).flac
468,104,564 hamming.flac
468,115,308 nuttall.flac
468,120,158 blackman_harris_4term_92db.flac
468,135,209 welch.flac
468,138,682 tukey(0.5).flac
468,158,817 gauss(0.25).flac
468,201,914 tukey(0.375).flac
468,249,562 flattop.flac
468,267,190 gauss(0.1875).flac
468,287,580 tukey(0.25).flac
468,302,503 gauss(0.5).flac
468,398,332 tukey(0.125).flac
468,454,515 gauss(0.125).flac
468,874,655 gauss(0.0625).flac
471,735,560 bartlett_hann.flac
472,299,815 rectangle.flac
472,843,664 bartlett.flac
Red Hot Chili Peppers - Blood Sugar Sex Magik (Full Album)
Style: Funkish
Code: [Select]
Original Wav
782,498,684 Red Hot Chili Peppers - Blood Sugar Sex Magik.wav

Flac 1.1.2 -8 Results
523,237,415 Red Hot Chili Peppers - Blood Sugar Sex Magik.flac

Flac 1.1.2_CVS -8 Results
521,158,274 tukey(0.875).flac
521,158,568 tukey(0.75).flac
521,166,423 connes.flac
521,174,697 hann.flac
521,174,741 tukey(0.625).flac
521,193,737 triangle.flac
521,193,803 hamming.flac
521,197,178 gauss(0.375).flac
521,201,057 gauss(0.4375).flac
521,211,888 tukey(0.5).flac
521,216,194 welch.flac
521,223,876 blackman.flac
521,240,553 kaiser_bessel.flac
521,280,125 gauss(0.5).flac
521,280,537 tukey(0.375).flac
521,290,126 nuttall.flac
521,294,333 blackman_harris_4term_92db.flac
521,371,597 gauss(0.25).flac
521,382,434 tukey(0.25).flac
521,505,539 flattop.flac
521,526,106 tukey(0.125).flac
521,549,562 gauss(0.1875).flac
521,813,394 gauss(0.125).flac
522,335,133 gauss(0.0625).flac
523,155,025 bartlett_hann.flac
523,237,413 rectangle.flac
524,038,164 bartlett.flac
Groove Armada - Lovebox (Full Album)
Style: Dance
Code: [Select]
Original Wav
612,634,892 Groove Armada - Lovebox.wav

Flac 1.1.2 -8 Results
395,533,466 Groove Armada - Lovebox.flac

Flac 1.1.2_CVS -8 Results
392,443,102 gauss(0.375).flac
392,447,978 tukey(0.875).flac
392,449,631 hann.flac
392,449,833 tukey(0.75).flac
392,453,838 connes.flac
392,457,010 blackman.flac
392,465,534 hamming.flac
392,468,106 tukey(0.625).flac
392,470,104 kaiser_bessel.flac
392,471,259 triangle.flac
392,471,695 gauss(0.4375).flac
392,491,145 nuttall.flac
392,493,035 tukey(0.5).flac
392,493,291 blackman_harris_4term_92db.flac
392,495,685 welch.flac
392,525,176 gauss(0.25).flac
392,538,654 tukey(0.375).flac
392,595,487 tukey(0.25).flac
392,600,698 flattop.flac
392,622,554 gauss(0.1875).flac
392,623,867 gauss(0.5).flac
392,671,281 tukey(0.125).flac
392,783,107 gauss(0.125).flac
393,140,808 gauss(0.0625).flac
395,199,556 bartlett_hann.flac
395,533,464 rectangle.flac
396,023,122 bartlett.flac
The Verve - Urban Hymns (Full Album)
Style: Pop/Ballads
Code: [Select]
Original Wav
804,031,244 The Verve - Urban Hymns.wav

Flac 1.1.2 -8 Results
494,791,655 The Verve - Urban Hymns.flac

Flac 1.1.2_CVS -8 Results
491,440,538 tukey(0.875).flac
491,447,640 connes.flac
491,448,939 hann.flac
491,449,585 tukey(0.75).flac
491,453,253 gauss(0.375).flac
491,461,577 blackman.flac
491,467,390 tukey(0.625).flac
491,469,750 hamming.flac
491,470,078 kaiser_bessel.flac
491,471,589 triangle.flac
491,471,650 gauss(0.4375).flac
491,491,665 nuttall.flac
491,499,434 blackman_harris_4term_92db.flac
491,504,951 welch.flac
491,506,776 tukey(0.5).flac
491,534,319 gauss(0.25).flac
491,559,488 tukey(0.375).flac
491,602,887 flattop.flac
491,617,819 gauss(0.1875).flac
491,620,564 gauss(0.5).flac
491,644,434 tukey(0.25).flac
491,761,568 tukey(0.125).flac
491,764,455 gauss(0.125).flac
492,091,795 gauss(0.0625).flac
494,421,935 bartlett_hann.flac
494,791,653 rectangle.flac
495,353,270 bartlett.flac
Strung Out - Live In A Dive (Full Album)
Style: Live Punk
Code: [Select]
Original Wav
722,151,068 Strung Out - Live In A Dive.wav

Flac 1.1.2 -8 Results
533,696,102 Strung Out - Live In A Dive.flac

Flac 1.1.2_CVS -8 Results
528,769,341 tukey(0.5).flac
528,770,866 tukey(0.375).flac
528,776,464 welch.flac
528,782,583 tukey(0.25).flac
528,789,090 tukey(0.625).flac
528,813,972 tukey(0.75).flac
528,815,281 tukey(0.125).flac
528,828,362 triangle.flac
528,840,448 tukey(0.875).flac
528,845,773 connes.flac
528,867,248 hann.flac
528,897,971 gauss(0.375).flac
528,904,222 gauss(0.4375).flac
528,919,209 hamming.flac
528,954,018 blackman.flac
528,974,356 kaiser_bessel.flac
529,023,953 nuttall.flac
529,036,398 blackman_harris_4term_92db.flac
529,105,501 gauss(0.5).flac
529,112,082 gauss(0.25).flac
529,259,804 flattop.flac
529,277,711 gauss(0.1875).flac
529,527,024 gauss(0.125).flac
530,035,049 gauss(0.0625).flac
533,255,366 bartlett_hann.flac
533,696,100 rectangle.flac
534,565,526 bartlett.flac
Fear Factory - Obsolete (Full Album)
Style: Metal
Code: [Select]
Original Wav
518,025,692 Fear Factory - Obsolete.wav

Flac 1.1.2 -8 Results
381,323,063 Fear Factory - Obsolete.flac

Flac 1.1.2_CVS -8 Results
379,522,355 tukey(0.5).flac
379,525,621 tukey(0.375).flac
379,532,651 tukey(0.625).flac
379,539,637 tukey(0.25).flac
379,544,551 welch.flac
379,548,405 tukey(0.75).flac
379,564,555 tukey(0.125).flac
379,566,876 tukey(0.875).flac
379,572,046 connes.flac
379,572,118 triangle.flac
379,585,024 gauss(0.4375).flac
379,586,927 hamming.flac
379,587,122 hann.flac
379,599,788 gauss(0.375).flac
379,632,795 blackman.flac
379,647,226 kaiser_bessel.flac
379,667,519 gauss(0.5).flac
379,677,449 nuttall.flac
379,681,694 blackman_harris_4term_92db.flac
379,727,801 gauss(0.25).flac
379,820,724 flattop.flac
379,828,164 gauss(0.1875).flac
379,996,743 gauss(0.125).flac
380,363,137 gauss(0.0625).flac
381,191,995 bartlett_hann.flac
381,323,061 rectangle.flac
381,714,147 bartlett.flac
Fun Lovin' Criminals - Mimosa (Full Album)
Style: Lounge
Code: [Select]
Original Wav
449,079,164 Fun Lovin' Criminals - Mimosa.wav

Flac 1.1.2 -8 Results
281,436,848 Fun Lovin' Criminals - Mimosa.flac

Flac 1.1.2_CVS -8 Results
279,068,094 gauss(0.1875).flac
279,069,181 flattop.flac
279,071,499 gauss(0.25).flac
279,082,887 nuttall.flac
279,084,603 blackman_harris_4term_92db.flac
279,098,071 kaiser_bessel.flac
279,108,855 blackman.flac
279,122,410 gauss(0.125).flac
279,155,127 gauss(0.375).flac
279,156,603 hann.flac
279,178,877 tukey(0.875).flac
279,181,915 connes.flac
279,208,723 tukey(0.75).flac
279,230,748 hamming.flac
279,237,677 gauss(0.4375).flac
279,240,716 triangle.flac
279,251,302 tukey(0.625).flac
279,308,770 gauss(0.0625).flac
279,308,906 tukey(0.5).flac
279,319,401 welch.flac
279,382,069 tukey(0.375).flac
279,387,062 gauss(0.5).flac
279,484,894 tukey(0.25).flac
279,600,667 tukey(0.125).flac
281,008,673 bartlett_hann.flac
281,436,846 rectangle.flac
281,503,282 bartlett.flac
Who are you and how did you get in here ?
I'm a locksmith, I'm a locksmith.

Improved FLAC encoder

Reply #63
synthetic soul when your last -8 run is done go ahead and post it here
I'm not sure it will ever be done.  It's on 18 of 28 at the moment.  14.wav started at 10:04 yesterday, and finished at 22:07!  While I'm working on the machine FLAC isn't getting much CPU time...

Anyway from the results I have so far tukey(0.25)+XXX is doing very very well again (see results for -5).  With this in mind I started a new test at home, using only 18 different combinations.  That is yet to complete, but here's the results so far (top scorer for each file).

Code: [Select]
Compression: -8
Files ordered by compression rate (according to single pass results)

File  Best Combination
==============================
03    tukey(0.125)+hamming.flac  (~33%)
21    
08    tukey(0.25)+gauss(0.125).flac
20    
25    
24    
16    tukey(0.125)+nuttall.flac
01    tukey(0.125)+nuttall.flac
18    
06    tukey(0.125)+gauss(0.375).flac
04    tukey(0.125)+gauss(0.125).flac
19    
17    tukey(0.125)+flattop.flac  (~60%)
14    tukey(0.125)+flattop.flac
09    tukey(0.125)+gauss(0.125).flac
00    tukey(0.125)+gauss(0.25).flac
11    tukey(0.125)+flattop.flac
12    tukey(0.125)+flattop.flac
13    tukey(0.125)+flattop.flac
10    tukey(0.125)+gauss(0.25).flac
22    
15    tukey(0.125)+flattop.flac
05    tukey(0.125)+flattop.flac
07    tukey(0.125)+nuttall.flac
23    
02    tukey(0.125)+gauss(0.25).flac  (~77%)
27    
26      (~81%)

As you can see, tukey(XXX)+flattop is looking very good once again.

The test is also recording encoding times.  I am hoping it will be complete by the time I get home tonight, at which point I should be able to detail the best combination on average (which may not be tukey(0.125)+flattop), the compression (%),  and also the compression rate compared with 1.1.2 and also 1.1.2_CVS with one pass.

However, at this juncture I would list these as my favourites:

-3 to -6 : hamming
-7 to -8 : tukey(0.125)+flattop
, or tukey(0.7)* if one pass

* Why not go for a value that compresses difficult to compress (50-70%) music better?  Classical may do better with 0.3 or 0.5, but it already compresses so well...  on my test corpus (1,339,144KiB) you are only talking about a difference of 124KiB anyway (difference between tukey(0.3) and tukey(0.7)).

FYI: Here's the the combinations I am testing at home:

Code: [Select]
tukey(0.125)+flattop.flac
tukey(0.125)+gauss(0.125).flac
tukey(0.125)+gauss(0.25).flac
tukey(0.125)+gauss(0.375).flac
tukey(0.125)+hamming.flac
tukey(0.125)+nuttall.flac
tukey(0.25)+flattop.flac
tukey(0.25)+gauss(0.125).flac
tukey(0.25)+gauss(0.25).flac
tukey(0.25)+gauss(0.375).flac
tukey(0.25)+hamming.flac
tukey(0.25)+nuttall.flac
tukey(0.375)+flattop.flac
tukey(0.375)+gauss(0.125).flac
tukey(0.375)+gauss(0.25).flac
tukey(0.375)+gauss(0.375).flac
tukey(0.375)+hamming.flac
tukey(0.375)+nuttall.flac
I'm on a horse.

Improved FLAC encoder

Reply #64
I have all the results now for file sizes/compression comparison.

I need to run the 1.1.2 and tukey(0.7) tests at home in a few hours to get the last few (and the only real important) timing results.

Until that time, here's the spreadsheet: flac-2-pass-results.xls

tukey(0.125)+flattop did produce the best average compression (59.705% compared to FLAC 1.1.2's 60.390%).  tukey(0.125)+gauss(0.125) and tukey(0.125)+gauss(0.25) did almost as well (still 59.705% - there's only 2-3KiB in it!).

On my corpus of 780.79MiB, using tukey(0.125)+flattop saves 1.17MiB over tukey(0.7).  It saves 8.96MiB over 1.1.2 (which I believe is a 1.15% saving).

When I get the timing results for 1.1.2 and tukey(0.7) I can then see whether the 8MiB is worth it; however I suspect it will be, given those figures and the assumption that running two algorithms is not twice as slow.  We're only talking about the higher/slower compression settings here anyway.

I'll let you know when I've added the remaining timing data (Sheet "-8 (times)").

Edit: I've added the remaining timing data.

I'm a little surprised at the results.  The one pass is basically the same speed as 1.1.2, and takes 62% the time of af the two pass two pass (806 seconds as opposed to 1297).  I didn't realise that the two pass would add so much time.

I will be adding -some core 5 times later, as I thought that may be of slight interest.

Edit: -5 times added, and I think they are of interest. The two pass doesn't seem to be such a hit on the encode rate (120% the time of the single pass, as opposed to 161% with -8), and it makes me wonder whether the two pass could be used at this rate.

I'm not sure of Josh's intentions but I hope that users will be able to specify with a switch anyway.
I'm on a horse.

Improved FLAC encoder

Reply #65
thanks.

hmm, it should be that if you have N -A switches, it should take almost N times as long as with one -A switch.

I am going to leave the -A swtich in so people can tweak.  if people start doing stuff like using 32 of them and then complaing FLAC is too slow I may change my mind  (like with --super-secret)

Josh

Improved FLAC encoder

Reply #66
Hey Josh, what if instead of leaving it open-ended with just one -A switch, you just had 2 or 3 more presets? For example, with all this data people have collected (  Synthetic Soul!), we (you) could figure out just which switches have the most effect on which types of music. Then you'd have 2 or 3 "auxiliary" switches, that you'd use in addition to the standard -5 or -8 to improve the ratio for that particular type of music. You could have:

-HM  ...use this one for heavy metal
-CM  ...use this one for classical/instrumental/opera music or whatever
-Rap  ...use for rap

Then people who don't want to use them don't have to, and those that do, can. The hardest part will be figuring out which window functions work best for which types of music. The auxiliary switches control these window functions. See what I mean? I think it's not a bad idea, but what do you guys think?

Improved FLAC encoder

Reply #67
BTW: My -8 test at work finished last night.  All reports at http://synthetic-soul.co.uk/temp/flac/.

I was initially going to back Cartman_Sr's suggestion, as there does appear to be mileage in it; it beats the Hell out of users having to work out what combination of windows to use themselves.  However, I'm not sure that the extra benefit is worth the extra effort.  I guess this all comes down to the decision Josh makes and how he implements these windows.  I still don't know whether Josh can adapt the window used part way through, e.g: checking the complexity after 10% and switching the window accordingly.

FYI: looking at -5, on average hamming (which I deemed to be the best on average) is 100.0084% of the best window, which I make (all these calculations are beginning to confuse me) to be 0.086KiB in every MiB.  The worst case (file 20.wav) is 0.743KiB per MiB (or 3.211KiB on a 4.32MiB FLAC).

To clarify: On my corpus, in the worst case, hamming lost 0.743KiB per MiB on the best that could be achieved.  That would be around 60KiB on a CD image.  On average though it would be 7KiB over for the same image! (350MiB FLAC file).  Is 7KiB worth the effort?

For -8, tukey(0.7) is 100.0231% of the best window, or 0.236KiB in every MiB.

All said and done though, if it's not too much effort, why not?  NB: I would use a format more like --genre "rock", rather than a unique switch for each type.
I'm on a horse.

Improved FLAC encoder

Reply #68
Another ten top combinations (out of 253 per one test file) for jazzy content.
Quote
flac -5
flattop+tukey(0,25)
flattop+tukey(0,125)
flattop+tukey(0,125)
flattop+tukey(0,125)
flattop+tukey(0,25)
flattop+tukey(0,125)
flattop+tukey(0,25)
flattop+tukey(0,125)
flattop+tukey(0,125)
flattop+tukey(0,25)
Quote
flac -8
gauss(0,125)+tukey(0,125)
flattop+tukey(0,125)
flattop+tukey(0,125)
flattop+tukey(0,125)
flattop+tukey(0,125)
flattop+tukey(0,125)
flattop+tukey(0,125)
gauss(0,125)+tukey(0,25)
gauss(0,125)+tukey(0,25)
flattop+tukey(0,125)

Results show that few people will use -A, and so there is no worthwhile reason to implement additional presets. On the other hand enthusiasts will appreciate inclusion of some statistics and recommendations in the documentation.

Improved FLAC encoder

Reply #69
Results show that few people will use -A, and so there is no worthwhile reason to implement additional presets.
Sorry, I don't really understand this statement, so may go off on a tangent here.  If you suggesting that most users don't use additional switches, then yes, I agree.  The default action needs to be considered so that the best window, or combination of windows is used automatically.  I'm dying to see what Josh chooses for each level (i.e.: which windows are used by default, and when he switches from one to two).

However, the fact that most users don't use switches doesn't really mean that switches can't be available.  Most users probably don't use --cue, --verify, --cuesheet, --replay-gain, etc., but they are very, very useful.

On the other hand enthusiasts will appreciate inclusion of some statistics and recommendations in the documentation.
Point them to this thread, that'll teach them.

Yes, a very small table in the docs may be adequate to help enthusiasts pick their -A choices by genre.

NB: to make these suggestions I think there needs to be a lot more testing though.  Guruboolez has some great results for classical, but we would need some dedicated rock, pop, and heavy/thrash metal to a similar standard to make truely accurate advocations.

Again though, I'm wondering (as guruboolez alluded to) how much difference there is between the top few windows.  There is definately a difference between the top and bottom - too much to be ignored - but when you get into discussions about tukey(0.7) over tukey(0.3), or tukey(0.125)+flattop over tukey(0.25)+gauss(0.25), I don't think it really matters all that much.  That said, why not take a little time to ensure that you have made an informed decision.  That's my take anyway (if indeed that is one, and not just conflicting ramblings as I suspect ).
I'm on a horse.

Improved FLAC encoder

Reply #70
-HM  ...use this one for heavy metal
-CM  ...use this one for classical/instrumental/opera music or whatever
-Rap  ...use for rap

NB: I would use a format more like --genre "rock"

I suggest to stay away from genres (because there are too many of them and it's often unclear what music belongs to them.
If Josh wants to go in that direction, maybe more generic catagories can be made. Let's try for a start: Loud (Heavy rock, metal, punk), Classical (accoustic performances), Contemporary (the rest).
In theory, there is no difference between theory and practice. In practice there is.

Improved FLAC encoder

Reply #71
Results show that few people will use -A, and so there is no worthwhile reason to implement additional presets.
Sorry, I don't really understand this statement, so may go off on a tangent here.
Not the statistical data itself, but amount of reports made me to surmise about people not willing to bother because of a few kilobytes (kibibytes? ).

Improved FLAC encoder

Reply #72
If Josh wants to go in that direction, maybe more generic catagories can be made. Let's try for a start: Loud (Heavy rock, metal, punk), Classical (accoustic performances), Contemporary (the rest).

Hmm, it is interesting if loudness can be determined automatically by fast replaygain scanning (or something)...

 

Improved FLAC encoder

Reply #73
I suggest to stay away from genres (because there are too many of them and it's often unclear what music belongs to them.
If Josh wants to go in that direction, maybe more generic catagories can be made. Let's try for a start: Loud (Heavy rock, metal, punk), Classical (accoustic performances), Contemporary (the rest).
Yes, I agree.  I guess calling the switch "genre" confused the issue.  I would only expect 3-5 presets.

Not the statistical data itself, but amount of reports made me to surmise about people not willing to bother because of a few kilobytes (kibibytes? ).
Ah yes, good point.  The number of testers is disappointing.  Adding a window or two will benefit all users more than just a few kilobytes though, which is great news.  However, tweaking default windows will be of little benefit comparatively.

I'm still actually a little concerned about the two pass with -8 dropping the encoding rate down from 9.5x to 6x.  I'm not sure whether FLAC users would like encode speed to drop so much for a 0.001% improvement (tukey(0.125)+flattop over tukey(0.7) on my corpus).

Hmm, it is interesting if loudness can be determined automatically by fast replaygain scanning (or something)...
Nice... 
I'm on a horse.

Improved FLAC encoder

Reply #74
hmm, it should be that if you have N -A switches, it should take almost N times as long as with one -A switch.
Just to double check I ran the script again here at work (I don't have access to the logs at home right now).  The exact times can be taken with a pinch of salt as I was working while the test was running, but it still goes to demonstrate the general differences:

Code: [Select]
1.1.2     hamming   tukey(0.125)+flattop
==========================
18.718    16.021    23.144
16.099    12.998    15.928
16.38    17.767    26.448
10.909    10.598    13.59
18.795    18.064    21.711
26.838    16.785    20.012
41.785    38.278    41.536
13.403    9.787    14.198
19.341    15.289    17.097
16.1      14.635    15.882
13.902    12.234    15.009
14.931    13.902    17.44
13.855    12.234    14.915
18.858    16.146    20.121
51.48    51.558    59.709
20.37    18.079    21.493
27.181    29.722    30.829
14.962    12.219    15.102
20.916    20.215    23.41
19.544    18.859    19.248
 3.226    2.883    3.522
19.84    15.118    17.799
37.624    34.6      38.762
17.175    14.713    16.053
12.842    9.756    12.016
25.514    23.846    29.176
24.127    21.321    26.153
12.063    10.13    14.058
==========================
566.778  507.757  604.361
On average tukey(0.125)+flattop takes ~120% the time of hamming on its own.

All helper files can be found in timethis-5-doublecheck.zip, including the batch file, the reports, and timethis.vbs used to scrape the times.

Edit: Initial test files (from home) also uploaded: timethis-5.zip
I'm on a horse.