Skip to main content
Topic: music scale in hertz (Read 5177 times) previous topic - next topic
0 Members and 1 Guest are viewing this topic.

music scale in hertz

There's just so much information on web on audio I can't locate a page that has a listing of hertz for complete scale.  (or a way to derive it from 440=A)

TIA
--
RockyJ


music scale in hertz

Reply #2
well on a keyboard instrument the ratio between each semitone is the 12th root of 2.

For example, multiply by ~1.0594631

u could make a spreadsheet of this easy

music scale in hertz

Reply #3
Well, I have said spreadsheet ready, but I can't figure out how to post attachments.  WTF?

music scale in hertz

Reply #4
Oh well, not knowing how to post an attachment, here are the values:

Pitch Number   Pitch Name    Hertz    
1   A    27.5000    
2   A#    29.1352    
3   B    30.8677    
4   C1    32.7032    
5   C#1    34.6478    
6   D1    36.7081    
7   D#1    38.8909    
8   E1    41.2034    
9   F1    43.6535    
10   F#1    46.2493    
11   G1    48.9994    
12   G#1    51.9131    
13   A1    55.0000    
14   A#1    58.2705    
15   B1    61.7354    
16   C2    65.4064
17   C#2    69.2957
18   D2    73.4162
19   D#2    77.7817
20   E2    82.4069
21   F2    87.3071
22   F#2    92.4986
23   G2    97.9989
24   G#2    103.8262
25   A2    110.0000
26   A#2    116.5409
27   B2    123.4708
28   C3    130.8128
29   C#3    138.5913
30   D3    146.8324
31   D#3    155.5635
32   E3    164.8138    
33   F3    174.6141    
34   F#3    184.9972    
35   G3    195.9977    
36   G#3    207.6523    
37   A3    220.0000    
38   A#3    233.0819    
39   B3    246.9417    
40   C4    261.6256    Middle C
41   C#4    277.1826    
42   D4    293.6648    
43   D#4    311.1270    
44   E4    329.6276    
45   F4    349.2282    
46   F#4    369.9944    
47   G4    391.9954    
48   G#4    415.3047
49   A4    440.0000
50   A#4    466.1638
51   B4    493.8833
52   C5    523.2511
53   C#5    554.3653
54   D5    587.3295
55   D#5    622.2540
56   E5    659.2551
57   F5    698.4565
58   F#5    739.9888
59   G5    783.9909
60   G#5    830.6094
61   A5    880.0000
62   A#5    932.3275
63   B5    987.7666
64   C6    1,046.5023
65   C#6    1,108.7305
66   D6    1,174.6591
67   D#6    1,244.5079
68   E6    1,318.5102
69   F6    1,396.9129
70   F#6    1,479.9777
71   G6    1,567.9817
72   G#6    1,661.2188
73   A6    1,760.0000
74   A#6    1,864.6550
75   B6    1,975.5332
76   C7    2,093.0045
77   C#7    2,217.4610
78   D7    2,349.3181
79   D#7    2,489.0159
80   E7    2,637.0205
81   F7    2,793.8259
82   F#7    2,959.9554
83   G7    3,135.9635
84   G#7    3,322.4376
85   A7    3,520.0000
86   A#7    3,729.3101
87   B7    3,951.0664
88   C8    4,186.0090

music scale in hertz

Reply #5
Now, how about a real challenge?  How to do a spreadsheet calculating cycles for meantone, or 1/7th syntonic comma well temperament?

music scale in hertz

Reply #6
The note numbers you posted are not MIDI compatible. (Midi: 0-127, where middle C is 60 and the 440Hz A is 57)

frequency = 440 * 2^((notenumber-57)/12.0)

HTH,
SebastianG

edit: make that '45' instead of '57'

music scale in hertz

Reply #7
Quote
The note numbers you posted are not MIDI compatible. (Midi: 0-127, where middle C is 60 and the 440Hz A is 57)

frequency = 440 * 2^((notenumber-57)/12.0)

HTH,
SebastianG

edit: make that '45' instead of '57'
[{POST_SNAPBACK}][/a]


Now I am confused... This is from: [a href="http://www.midi.org/about-midi/tuning.shtml]http://www.midi.org/about-midi/tuning.shtml[/url]

Code: [Select]
Examples of frequency data:

   00 00 00 = 8.1758 Hz (C – normal tuning of MIDI key no. 0)
   00 00 01 = 8.2104 Hz
   01 00 00 = 8.6620 Hz
   0C 00 00 = 16.3516 Hz
   3C 00 00 = 261.6256 Hz (middle C)
   3D 00 00 = 277.1827 Hz (C# – normal tuning of MIDI key no. 61)
   44 7F 7F = 439.9984 Hz
   45 00 00 = 440.0000 Hz (A-440)
   45 00 01 = 440.0016 Hz
   78 00 00 = 8372.0190 Hz (C – normal tuning of MIDI key no. 120)
   78 00 01 = 8372.0630 Hz
   7F 00 00 = 12543.8800 Hz (G – normal tuning of MIDI key no. 127)
   7F 00 01 = 12543.9200 Hz
   7F 7F 7E = 13289.7300 Hz (top of range)
   7F 7F 7F = no change (reserved)


so it indicates  Middle C as 60, 440Hz being A-5 ( note number 69 ), and top note 7F being G-9 .
[Edit] Err.... G-10[/Edit]


So the formula actually looks more like :

440 * 2 ^ ((notenumber-69)/12)    ( 69, not 57, because  2^0 = 1 )

music scale in hertz

Reply #8
thanks for response, before these replies  I did a search here and found the tone generator listed in a lot of the lame sites:
fmg93.zip  "Frequency master generator v 0.93"

It has a table, however it also lists that highest in range as 13+khz like posted above.

I can't hear that tone in the pure form as generated.  Also I see that the sine wave at this hertz is awful malformed due to the 44.1 sample rate.

I will try the one in above reply and see what that sounds like for me.  Also research the other info.

Thanks
--
RockyJ

music scale in hertz

Reply #9
Quote
The note numbers you posted are not MIDI compatible. (Midi: 0-127, where middle C is 60 and the 440Hz A is 57)

frequency = 440 * 2^((notenumber-57)/12.0)

HTH,
SebastianG

edit: make that '45' instead of '57'
[a href="index.php?act=findpost&pid=292401"][{POST_SNAPBACK}][/a]


You are right, the note numbers are not midi comppatible.  Hummm...I wonder what I was thinking, numbering the notes from 1 to 88.  I wonder what keyboard instrument has 88 keys?  88 keys?  Must be awfully uncommon.

music scale in hertz

Reply #10
Quote
You are right, the note numbers are not midi comppatible.  Hummm...I wonder what I was thinking, numbering the notes from 1 to 88.  I wonder what keyboard instrument has 88 keys?  88 keys?  Must be awfully uncommon.
[a href="index.php?act=findpost&pid=292580"][{POST_SNAPBACK}][/a]



I'm just toying around with MIDI programming right now. That's why I mentioned it.

music scale in hertz

Reply #11
Quote
,Apr 21 2005, 08:25 PM]
Quote

frequency = 440 * 2^((notenumber-45)/12.0)
[{POST_SNAPBACK}][/a]

Now I am confused... This is from: [a href="http://www.midi.org/about-midi/tuning.shtml]http://www.midi.org/about-midi/tuning.shtml[/url]
Code: [Select]
   45 00 00 = 440.0000 Hz (A-440)

So the formula actually looks more like :
440 * 2 ^ ((notenumber-69)/12)    ( 69, not 57, because  2^0 = 1 )
[a href="index.php?act=findpost&pid=292495"][{POST_SNAPBACK}][/a]


Right. Funny thing is: 45hex = 69d. I obviously treated 45 as decimal and didn't notice because it's just 2 octaves lower, thus 69-45 mod 12 = 0.


SebastianG

edit: shortened quotations

music scale in hertz

Reply #12
Quote
It has a table, however it also lists that highest in range as 13+khz like posted above.

I can't hear that tone in the pure form as generated.  Also I see that the sine wave at this hertz is awful malformed due to the 44.1 sample rate.
[{POST_SNAPBACK}][/a]


How a 13 kHz sine sampled at 44 kHz looks to you isn't important. A good D/A converter is able to reproduce this sine perfectly using [a href="http://ccrma-www.stanford.edu/~jos/resample/]bandlimited interpolation[/url].


SebastianG


 
SimplePortal 1.0.0 RC1 © 2008-2020