
Playlist Manager

(aka Playlist-Manager-SMP)

regorxxx

September 9, 2021

1

Contents

I Introduction 6

1 Why do we need a playlist manager? 6

1.1 Playlist tabs and UI limits . 6

1.2 Auto-playlists slowdowns . 7

1.3 Playlists are a bit auto-destructive . 8

2 Multiple problems, one solution? 9

2.1 Which playlist are compatible with it? . 9

II Features 10

3 Tracking folder 10

4 Managing Playlist files and Auto-playlists 11

4.1 Auto-playlists . 11

4.2 Standard playlists . 12

4.3 How paths are written: absolute and relative paths 13

4.4 Setting playlists format . 14

4.5 Creating playlists . 15

4.6 Playlist loading . 16

4.7 Auto-saving and Auto-loading . 16

4.7.1 Auto-saving . 16

4.7.2 Auto-loading . 17

4.8 Playlist binding . 17

4.9 Deleting and restoring files . 18

4.10 Locking files . 19

5 Automatic playlist actions 20

2

6 Automatic track tagging 22

7 Exporting Auto-playlist 24

7.1 Exporting or importing Auto-playlist files . 24

7.2 Export as json file . 25

7.3 Clone as standard playlist . 26

8 Exporting playlists and files 28

8.1 Copy Playlist file . 28

8.2 Export and copy tracks to . 28

8.3 Export and convert tracks to . 29

9 Additional tools 32

9.1 On selected playlist . 32

9.1.1 Force relative paths . 32

9.2 On entire list . 32

9.2.1 Dead items . 32

9.2.2 External items . 32

9.2.3 Duplicated items . 33

9.2.4 Mixed absolute and relative paths . 33

10 Manual refresh 34

11 Shortcuts 35

III UI 36

12 Features 36

13 List view 37

13.1 Category filtering -permanent- . 37

13.2 Tag filtering -temporal- . 38

3

13.3 Sorting . 38

13.4 Tooltip . 39

14 Customization 41

14.1 Custom color . 41

14.2 Others . 41

IV Other scripts integration 43

V Playlist formats 44

15 Playlist metadata 44

15.1 Lock state . 44

15.2 [Playlist] Tags . 44

15.3 Track tags . 45

15.4 Category . 45

15.5 UUID . 45

16 .m3u & .m3u8 46

16.1 Extended M3U . 46

17 .pls 48

18 .fpl 49

19 Auto-Playlists 51

VI FAQ 52

VII Tips 53

20 Sharing 53

4

21 Multiple views 53

22 Tag automation 53

23 Pools 54

24 Working with locked playlists 54

25 Portable ’plug&play’ installation 55

5

Part I

Introduction

1 Why do we need a playlist manager?

1.1 Playlist tabs and UI limits

Foobar2000 already excels at library management, specially with plugins, but there is a hole in its
set of features: playlist management. Playlists, by default, are entities always loaded within the
UI, specially for those using playlist tabs. At some point, if there is a high number of them, the UI
becomes cluttered with so many tabs that it becomes useless.

Figure 1:

For this reason there has been some attempts of playlist manager UI plugins for DUI and
CUI1 which try to work around that with lists or playlist drop-downs. The problem is that those
solutions are only workarounds... the playlists are still loaded within Foobar2000, so you must either
completely remove the playlist tabs or clutter the UI with them. The managers make it easier to
look for specific playlists, but the tabs dilemma remains the same.

And lets not talk about having thousands of playlists, then the only layout possible is a
single tab for the active playlist and using a playlist list to switch between them. The problem with
that layout is obvious? Are you able to switch between 2 or 3 playlist easily? No, that’s what tabs
are meant for, but since they are unusable in this use-case...

The problem seems to be that playlists are always loaded within Foobar2000.
Why do you need a list of playlists if they are already loaded? Would not make it more
sense if you were able to load a playlist -from the list- in the tabs on demand the same
than you add a track to a playlist -from the library-?

1Default UI and Columns UI.

6

1.2 Auto-playlists slowdowns

Other of the problems experienced by advanced users appears during the prominent use of Auto-
playlists. They are so great that it’s easy that you end creating a lot of them... but then Foobar2000
magically becomes really slow at startup. Why? Because Auto-playlists query the library everytime
they are created, so every Auto-playlist instance equals to a query that is constantly checked on
real time2... At startup is even worse, since all those great Auto-playlists have to be created at that
point, thus requiring a lot of time until all are done.

Some examples to easily break your Foobar2000 instance :), enjoy:

%rating% MISSING OR %last modified% DURING LAST 1000 SECONDS

%last played% DURING LAST 19 MINUTES

(%replaygain track gain% MISSING) OR (%style% MISSING) OR (%ALBUM DY-
NAMIC RANGE% MISSING)

NOT ((%path% HAS ”\ \”) OR (NOT %path% HAS ”{”) OR (%comment% MISSING)
OR (%title% IS -))

The problem -again- seems to be the design choice of playlists always being
loaded within the program. If Auto-playlists were loaded on demand, there would be no need to
check them all at startup... neither constantly checking all of them all of the time. For this particular
problem, there is a Spider Monkey Panel script which allows you to load Auto-playlists on demand:
marc2003’s Auto-playlist Manager.

Figure 2: marc2003’s Auto-playlist Manager Figure 3: Editing a query.

2For ex. Check this thread: High Processor usage at Foobar Idle, just a single query which use time ranges lower
than 20 minutes are a problem.

7

https://theqwertiest.github.io/foo_spider_monkey_panel/docs/script_showcase/single_panel_scripts/
https://hydrogenaud.io/index.php?topic=72089.0

1.3 Playlists are a bit auto-destructive

One of the consequences of playlist being an UI element by design, is that they only exist while
being loaded within the UI. That seems a redundant pleonasm (pun intended), but is not: playlists
are permanently deleted as soon as you close their instance in the UI. And that’s a big thing3...
Furthermore, while they may be ’restored’ as long as you deleted the playlist on the same session, as
soon as you close Foobar2000 the playlist history is gone. So it can not be undone.

The obvious problem is playlist not having a physical counterpart file managed
in a non-destructive way. Well, to honor the truth, standard playlists do have a physical file
somewhere in the profile folder... but:

1. They are in a closed source format.

2. They use an non-human readable UUID as name, so there is no way to know to which
playlist they are linked to (aka good luck making backups or exporting an specific playlist).

3. The files are only updated when shutting down the program.

(a) Changes between sessions are lost if there is a crash.

(b) Playlists files are permanently deleted if you close a playlist.

(c) New playlists are only saved when closing the program.

4. All the file management is done without indication, user intervention and in a non-transparent
way.

Figure 4: Uhm... yeah. Clearly ’58E7CE21759EE609C2B40CFAB9235F37’ belongs to the library
viewer. Or is the other?

An ad-hoc solution for some of these problems is the use of another plugin to create
automatic backups (including the physical playlists files and the database for unsaved changes):
Autosave & Autobackup (foo jesus).

3Do you imagine loosing your track files because you deleted the track from a playlist?

8

https://hydrogenaud.io/index.php?topic=68528.0

2 Multiple problems, one solution?

It seems there are partial solutions for Auto-playlists and other for standard playlists, but none for
both... and in any case, either with native Foobar2000 or using plugins, some features are missing:
adding labels to playlists, sub-folders to categorize them (instead of a plain list), searching, loading
on demand (for standard playlists), easy exporting or syncing between the native foobar format and
a plain text file4

Looks like you have to mix and match tons of plugins and scripts to manage different types
of playlists, without an unified UI or manager and with basic features missing. Foobar is meant to
manage libraries and tracks, not playlists5.

So multiple problems and limitations have been discussed and now comes the point where a
solution is proposed... and there is the place where this manager fits: a playlist manager which aims
to work with playlist and Auto-playlists (without distinction) on the same panel, which only load
things on demand when required. Add some neat features to the mix like labeling, auto-tagging,
auto-saving, syncing physical playlist files with loaded ones, backups, advanced exporting tools
and integrity checks... and that’s only a fraction of what can be done with it. Btw, marc2003’s
Auto-playlists are fully compatible and can be imported, in case you wonder.

2.1 Which playlist are compatible with it?

Short answer: All.

Within the Playlist Manager context, playlists are virtual items (loaded in the UI) also
linked to a physical file in the preferred format (.m3u8, .m3u, .pls or .fpl).

Auto-playlists, due to its nature (its content change according to the library they reside
in), are saved into json format [VI] in a file named accordingly to the folder tracked by the Playlist
Manager6.

.fpl playlists, similarly to Auto-playlists, are read only files... due to its closed source nature
they are locked for further editing by default and metadata7 is saved into the json file described
previously.

In resume, writable formats are those that may be freely edited (.m3u8, .m3u, .pls) and
readable-only formats are those that may be tracked by the manager with at least a minimum set of
features8 and the capability to load their tracks within foobar (.fpl or .json).

4Obviously nothing stops you to save your playlist manually using ’File\Save playlist...’. But how do you do that
on 100 playlists?

5Not saying there is a player out there which does it better, so lets not even talk about having all those features!
6For ex. if the panel is set to track ’H:\My Music\Playlists’, then the playlist json file (at foobar profile folder) will

be at ’.\js data\playlistManager Playlists.json’.
7Category, tags, lock status, etc.
8Metadata editing and conversion to a writable format.

9

Part II

Features

3 Tracking folder

The key feature of a file manager, whether it’s a library or playlist manager, can be reduced to
tracking paths in some way. The playlist manager tracks one folder per instance9 and lists all readable
playlist files found on it. Auto-playlists, while not being ”on the folder” are considered linked to it,
so different playlist manager instances have different Auto-playlists associated.

Figure 5: Setting tracking folder. Figure 6: Tracking an absolute path.

Sub-folders are not tracked10 and the tracked path is meant to be set once and done, so
categorization is done with metadata instead [13.1]. Why? It offers the same functionality (’virtual
sub-folders’) while not making it unnecessarily complex... at the end these are playlist files (links to
tracks), not tracks. So they should be physically more or less all on the same place while also having
some kind of metadata to easily categorize them11.

The path to be tracked may be an absolute or relative path. Relative paths have their
root set at the Foobar2000 installation path (where the ’.exe’ resides in). So something like
’.\profile\playlist manageŕıs perfectly fine. There are multiple reasons to prefer relative paths, check
the tips section for more info [25].

9Yes, that means you may have multiple manager panels.
10i.e. If ’Playlists’ is tracked, ’Playlists\Summer’ will not be tracked too’
11If you think otherwise, nothing stops you to create multiple sub-folders and having multiple manager instances in

a panel with tabs for easy access.

10

4 Managing Playlist files and Auto-playlists

4.1 Auto-playlists

Contains all functionality on Auto-playlist Manager by marc2003 plus more:

• Create, rename, delete Auto-playlists.

• Edit query, sort pattern and sort forcing.

• Adds tooltip info, UI features, filters, etc.

• Number of tracks output is updated at foobar startup, ’Manual refresh’ [10], when loaded or
automatically at startup.

• Queries and sort patterns are checked for validity before using them, instead of crashing.

• Import playlists from Auto-playlist Manager by marc2003[7.1].

• ...

Auto-playlists are essentially treated the same than standard playlists, with their physical
file being a json formatted file (containing all Auto-playlists). They can be exported or imported the
same than standard playlists, cloned as standard playlists, etc. In other words, the differences are in
their internal format and their set of features associated, but that’s all12. There is no differences in
the way they are managed or presented to the user.

Figure 7: Tooltip shows all relevant info, like query, sort pattern, etc.

12Obviously standard playlist have no query or sort patterns. But whenever a tool or feature make sense in both
types of playlists, it’s implemented on both.

11

4.2 Standard playlists

Standard playlists are the usual playlists used within Foobar2000, the ones where you may add,
remove or reorder tracks (contrary to Auto-playlists which are query-generated). When a playlist
loaded in Foobar2000 is also tracked by the manager, then a physical playlist file within the tracked
folder is associated to it. That process is called ’playlist binding’ [4.8]. There is nothing special about
it, it’s simply a way to say the physical file and the playlist within foobar are in sync.

Playlist files may be freely created, renamed, deleted, etc. and their associated Foobar2000’s
playlist counterpart will follow the same changes (if desired). The same applies both directions (with
some logical exceptions). It’s key to understand this; there is a real physical playlist file with all
those tracks written to it: If at some point you close a playlist within Foobar2000 and restart it, that
playlist is gone for good13. On the other hand, if you do the same with a playlist from the manager,
you may simply reload the file. The physical file is never deleted unless you do it on purpose, so you
can always load at any point no matter what you do with the playlist on the tabs.

Figure 8: The playlist tabs have 4 playlists currently loaded, while the manager has other playlists
which are not loaded yet.

Figure 9: Playlist’s tooltip show essentially the same info than Auto-playlist’s one. Note both types
of playlists are easily differentiated by their color code.

13Because playlists only reside in the program as long as they are loaded within the UI.

12

4.3 How paths are written: absolute and relative paths

In writable playlists formats, tracks may be written as absolute or relative paths (considering the
root the folder where the playlist resides in). For ex:

Absolute path:
D:\Music\Big Retro Hits 90s\007. Chateau Pop - Maniac.mp3

Relative path on current root (D:\):
.\Music\Big Retro Hits 90s\007. Chateau Pop - Maniac.mp3

Relative path one level up from root (D:\Playlists\):
..\Music\Big Retro Hits 90s\007. Chateau Pop - Maniac.mp3

Relative paths may be enabled changing the related configuration on the header menu. Note
enabling this feature is not enough condition per se, since the tracks must reside in the same drive
disk to have relative paths working. Whenever relative paths can not be set, absolute paths are used
as fallback.

Figure 10: Setting relative paths for tracks.

13

4.4 Setting playlists format

All playlists created or edited by the manager use the format (extension) set on the panel, no matter
their original format. That means that new playlists will use by default that format but also that
any external playlist added to the tracked folder will be converted to the set format unless manually
locked to avoid so[4.10]. The configuration can be changed at the header menu [11].

Figure 11: Playlists default format.

Additionally, playlist files may be written with or without BOM (files are always UTF-8
encoded). For compatibility purposes it can also be enabled or disabled on the header menu [11].

Figure 12: BOM configuration.

Further information about the differences of the multiple formats available and their
structure can be found on the respective section [V].

14

4.5 Creating playlists

Creating new playlists [files] may be done easily in 2 ways on the list contextual menu[11]: either an
empty playlist or creating a new file from the active playlist (’cloning it’). The first option simply
creates an empty playlist file on the tracked folder and then also a new playlist on Foobar2000’s UI
with the same name:

Figure 13: Menu entries to create playlists. A
popup will appear to input the name.

Figure 14: Playlist is created in both places:
the UI and the physical folder.

The second option simply creates the physical14 file in the tracked folder, bound to the
active playlist. A popup will appear asking to maintain the name (thus using the active playlist) or
input another one (creating and using a clone of the active playlist with the new name).

Figure 15: Cloning active playlist. Figure 16: Query input for Auto-playlist.

Auto-playlists are created using the third option of the same contextual menu. Appart from
the name. query and sorting are also set via popups.

14The format used is the one set at configuration.

15

4.6 Playlist loading

Foobar2000 loads playlists pretty fast thanks to using a binary playlist format (.fpl) instead of looking
for the physical track files. The binary format stores all the relevant metadata needed to then display
the tracks within foobar200.

On the contrary, loading any of the writable format playlists in native Foobar2000 is really
slow. The physical files are loaded one by one and then their metadata retrieved... that process is
done asynchronously and can easily take minutes as soon as a playlist has more than a hundred of
tracks15.

The manager uses those writable formats to create clones of the playlists within foobar but
they are loaded as fast as the native binary format (.fpl) by finding matches on library for every
track. Since playlists are supposed to be pointing to items already on Foobar2000’s library on most
cases, caching the paths of every item on library greatly speeds up the process16.

Figure 17: Async loading of a playlist file with tracks not present on library.

4.7 Auto-saving and Auto-loading

4.7.1 Auto-saving

The first refers to the capability of duplicating any change made within a foobar loaded playlists
(usually those on the playlist tabs) to their physical file counterpart. Obviously, only those playlists
with a ”clone” in the Playlist Manager panel will be tracked for changes17. This may be configured
or completely disabled (to only reflect changes manually).

Since the only way to assign a playlist file to a Foobar2000 playlist is forcing both to have
the same name, a new problem appears... what about duplicates?

By default the Playlist Manager will not allow you to have 2 playlists with the same name
if there is already a playlist file named equal to them. i.e. no duplicates allowed. Note there is not
a UUID associated to every playlists to work with, so in fact the only thing that may be used as
UUIDs are the names. There are multiple configurable UUIDs that can be set instead of the plain
name that can be used to allow some kind of ’duplicates’ or to differentiate tracked from non tracked
playlists.

15Note subsequent loading of the same playlist is much faster since those items have been already cached.
16This erratic behavior has been already reported at Foobar2000 support forums without an answer.
17In other words, it may be possible to have both tracked and non tracked playlists within foobar.

16

4.7.2 Auto-loading

The former refers to the capability of automatically tracking any playlist file within the tracked
folder. i.e. any change made to that folder18 is reflected on real time on Foobar200. This may be
configured or completely disabled (to only reflect changes manually or on startup).

4.8 Playlist binding

Binding is the action of associating a playlist within Foobar2000 and a physical file for syncing
purposes. This is done by name, so a playlist named ’ABC’ in the manager will be a mirror of a
playlist named ’ABC’ in Foobar2000 UI. Additional ways to handle playlist names can be set using
UUIDs [15.5].

Figure 18: Bind selected playlist to active
playlist.

Figure 19: The active playlists is renamed and
the playlist file updated with its contents.

Bound playlists are auto-saved if such feature is enabled, i.e. any change made to the
Foobar2000 playlist will be automatically reflected in the physical file. Other restrictions may apply
though19. Other manual actions include:

• Reload: reloads the playlist within Foobar2000, overwriting any non saved change.

• Update / Force update: saves any change to the physical file20.

• Delete: deleting the file also asks to delete the bound playlist within Foobar2000.

• Rename: Renaming the file also renames the bound playlist21.

• Show bound playlist: bound playlist within Foobar2000 becomes active playlist22.

18Like adding or removing playlist files.
19Playlist may be locked for changes, a non writable format may be used, etc.
20The manual counterpart of auto-saving.
21This is a requisite, since the link is the name!
22Like the ’Show now playing’ action, but instead it simply shows the selected playlist.

17

4.9 Deleting and restoring files

Playlist files deleted within the manager context are not permanently deleted but sent to the Recycle
Bin. Timestamps are used to uniquely identify files; this is done to ensure no collisions with other
files within the Recycle Bin. Manually deleting a playlist using the playlist contextual menu [11]
allows restoring at a later point using the list contextual menu23.

Figure 20: Delete selected playlist. Figure 21: Restore deleted playlists.

Additionally, a backup of the Auto-playlist/fpl json database is created every time the panel
is loaded and previous backups are sent to recycle bin24.

23Alternatively, the file may be found on the Recycle Bin... so it could be restored manually after stripping the
timestamp.

24In other words, there is always 2 versions of the file. The current and the previous [start-up] one.

18

4.10 Locking files

Playlist may be locked to disable editing, overwriting the physical file or any change apart from
unlocking or renaming it25. Locked playlists are also skipped on auto-saving.

Figure 22: Lock selected playlist. Figure 23: Locked playlist tooltip.

Note a loaded playlist within foobar may be edited even if its associated physical file is
locked. This is done on purpose 26, to allow playlist edits while having the physical file locked and
untouched. At any point the playlist may be unlocked and changes be saved or it may be directly
forced to update the changes. Alternatively they may be discarded simply reloading the playlist file.

Figure 24: Unlock selected playlist. Figure 25: Force saving to locked playlist.

Native foobar playlists files (.fpl) are locked by default27.

25Only the physical file is renamed in such case.
26Contrary to what other Foobar2000 playlist managers do, which lock/unlock the playlists within the program

(sincere there is no physical files).
27Configurable at properties panel only.

19

5 Automatic playlist actions

Some reserved playlists tags names are used for special purposes by the manager to automatically
perform some actions as soon as it loads a playlist with such keywords.

- ’bAutoLoad’ makes the playlist to be loaded within foobar automatically (on the UI). Meant
to be used on remote servers with online controllers.

- ’bAutoLock’ locks the playlist as soon as it’s loaded on the panel.

The feature must be explicitly enabled on the header menu [11] to work; i.e. a playlist with
such tags will not automatically perform any action until done so.

Figure 26: Enabling Automatic playlist actions on the header menu.

Additionally, tags may be added to playlists automatically as soon as they are loaded. This
may be used to enforce an specific tag on all playlists tracked by the manager, no matter what it’s
set on the playlist file. Furthermore, used along the automatic playlist actions, it may be used to
force loading or locking of all playlist tracked28.

28It’s disabled by default, so this allows both: to selectively apply actions to ’tagged’ playlists or apply them to all.

20

Figure 27: Setting tags to be added automatically to tracked playlists.

Obviously, nothing stops you to use it to simply tag playlists with a custom tag that has
nothing to do with automatic actions. In any case, the tooltip shows the playlist tags (whether they
are for informative purpose or used for actions):

Figure 28: [Playlist] tags on tooltip.

21

6 Automatic track tagging

Playlists may be used to automatically tag tracks on demand (the moment you add a track) or on
startup [15.3]. The conditions to tag tracks on a playlist are set using the contextual menu for the
selected playlist [11] and must follow json format [VI]. For example:

Example Description of how tracks would be tagged

[{”rating”:5}] %rating% and a value of 5
[{”mood”:”Chill”}] %mood% and a value of ’Chill’
[{”year”:”$year(%date%)”}] %year% and a year value from the full date tag
[{”checked”:”JS:todayDate)”}] %checked% and a date value using JavaScript.

Table 1: Automatic track tagging examples.

Figure 29: Add track tags to selected playlist. Figure 30: Track tags popup.

As noted, the use of arbitrary JavaScript functions is allowed, but they must be defined
at a helper file ’.\helpers\helpers xxx utils.js’. In this case, the function it simply returns the date
Y-M-D-h-m-s in which was tagged. Users may add their own functions to it.

Playlists may have multiple track tags, in that case all of them would be applied to the
tracks when required. Other features include:

- Can be configured separately for standard playlists, Auto-playlists, locked playlists and individ-
ual playlists.

- Standard playlists may be used to easily tag your library just by sending them to the right
playlist (which don’t need to be loaded at all).

- Auto-playlists Auto-tagging allows to automatically (and periodically) apply some tagging logic
to the current library following some condition.

- Allows multiple conditions (must follow json format) [VI]. Look at playlist metadata for more
info 15.3.

22

The feature must be explicitly enabled on the header menu [11] to work; i.e. a playlist with
track tags will not apply them until done so.

Figure 31: Enabling Automatic track tagging on the header menu.

When a playlist have track tags set, the tooltip shows the tags which would be written in
case it’s applied:

Figure 32: Track tags on tooltip.

23

7 Exporting Auto-playlist

7.1 Exporting or importing Auto-playlist files

The original idea of a playlist manager was that found on Auto-playlist Manager by marc2003 which
consisted only on a list of Auto-playlists which could be loaded on demand... thus to make it easy to
transfer all those Auto-playlist to this manager there is an option to directly import its json files29

on the list contextual menu [11].

Figure 33: Figure 34:

At the importing process 2 options may be chosen depending on the json file being originary
from marc2003’s panel or from this one30. All Auto-playlists found will be checked for validity and
added to the current playlist on the manager.

Exporting the Auto-playlists from this manager is equivalent to the marc2003’s one, just
copy/paste the appropriate json file31. To import it at another panel instance just follow the steps
written previously, and choose the appropriate option (files from this panel).

Note the json file from this manager contains both Auto-playlists and .fpl virtual playlists for
metadata purposes [18], but the latter are discarded when importing using the menus as described32.
Anyway the format from this manager is not backwards compatible with marc2003’s script, so it
doesn’t affect in any way for regular users.

Alternatively, Auto-playlists from the panel may be selectively exported using the playlist
contextual menu option [7.2].

29marc2003’s json file (at foobar profile folder) will be at ’.\js data\autoplaylists..json’.
30Since marc2003’s panel follows its own schema for Auto-playlists, some internal conversion is needed [19]
31For ex. if the panel is set to track ’H:\My Music\Playlists’, then the playlist json file (at foobar profile folder) will

be at ’.\js data\playlistManager Playlists.json’.
32Contrary to marc2003’s script, whose json file only has Auto-playlists.

24

7.2 Export as json file

Single Auto-playlists may be exported as json files, instead of following the general procedure (which
exports all of them at once), using the selected playlist contextual menu [11].

Figure 35: Export selected Auto-playlist. Figure 36: Path to exported json file.

Alternatively all Auto-playlists may be exported at once using the list contextual menu too.
This option has an advantage over the general procedure of just copying the json file: .fpl playlists
may be filtered before exporting, thus exporting only the Auto-playlists33.

Figure 37: Export all Auto-playlists. Figure 38: Auto-Playlists and .fpl popup.

33Therefore, choosing both playlists types at exporting process is equivalent to simply copying the associated panel
json file.

25

Figure 41: Enabling filtering duplicates for Auto-playlists clones on header menu.

7.3 Clone as standard playlist

Auto-playlists may be converted to standard playlists (writable formats [V]) for further editing,
sorting or exporting as plain-text files. A new playlist file will be created in the tracked folder with
similar name and duplicating the tracks and sorting from the Auto-playlist.

Figure 39: Clone selected Auto-playlist.
Figure 40: Cloned Auto-playlist as standard
playlist.

Additionally, duplicates may be automatically removed according to tag(s) or TF expres-
sion(s) by setting ’On AutoPlaylist cloning, filter by....’ option. By default is set to ’artist,date,title’34.

34Automatizes the process of removing duplicates by tags after cloning using tools like those found on Playlist-
Tools-SMP and automatically fixes one of the worst quirks of Auto-Playlists (having multiple versions of the same
tracks)

26

Figure 42: Cloned Auto-playlist now has 3 less tracks (132) than the original (135).

Once an Auto-playlist has been converted, the regular exporting tools may be used [8] to
export or convert not only the playlist but also its tracks (for ex. exporting to a portable player).

27

8 Exporting playlists and files

8.1 Copy Playlist file

Exports (a copy of) the selected playlist file to the given path, the final filename may be changed35.
This is equivalent to open the tracked folder and copying/pasting the file to the desired location.

Figure 43: Copy selected playlist file. Figure 44: Output popup.

D:\foobar2000\profile\playlist manager\example.m3u8 → D:\output\example.m3u8

This is the only option available for readable-only formats [V] which have a physical file
(.fpl). The Auto-playlist counterpart would be exporting as json file [7.2].

8.2 Export and copy tracks to

Exports (a copy of) the selected playlist file along their tracks to the given path36, the final playlist
filename may be changed.

35If the folder does not exists, it will be created too.
36It’s obviously recommended to choose a new folder without any content, since it will be filled with all tracks plus

the playlist.

28

Figure 45: Copy selected playlist file and its
tracks.

Figure 46: Output folder with all media files
along the exported playlist.

Since the tracks are exported ’as is’37 along the playlist, the exported playlist will be edited
to use relative paths, no matter what the original used. This is done to easily load the playlist at
any point along its files as a portable solution.

[...]
#EXTINF:259,Jaki Graham - Round And Around
D:\My library\Big Retro Hits 90s\004. Round And Around.mp3
[...]

⇓⇓⇓

[...]
#EXTINF:259,Jaki Graham - Round And Around
.\004. Round And Around.mp3
[...]

This exporting option is not available for readable-only formats [V]. To use it on Auto-
playlist, first clone it as standard playlist [7.3], then proceed as usual. To do something similar with
.fpl playlists, manually convert them to a writable format and then proceed as usual.

8.3 Export and convert tracks to

Exports (a copy of) the selected playlist file along their tracks to the given path, the final playlist
filename may be changed. The tracks are converted on the process38 and the exported playlist is
edited to use relative paths [8.2].

Since the files are converted, instead of being copied, they are ready to use not only on
other PCs of Foobar2000 instances but also on portable players, phones, etc. i.e. it may be used as a
one way sync tool integrated within the manager and working directly on playlists.

37No conversion is done, so the file formats will remain the same and they will be perfect copies of the original files.
38Using pre-defined Converter presets.

29

The feature allows to save predefined sets of converter preset + destination folder on the
menu for easy access39. The entries may be configured, added or removed on the header menu [11].

Figure 47: Setting export and convert presets: converter preset, filename mask and output folder.

Figure 48: Converter window will be shown
at execution.

Figure 49: Output path will be asked at exe-
cution.

39For ex. it’s possible to have an entry to export playlist to the Ipod and another one for the server, both with
different converter configurations and destination folders.

30

Figure 50: Filename mask must match the
one at the converter preset to properly modify
names on the output playlist file.

Figure 51: The converter preset can be set to
ask for the output path at execution. Note
filemask matches the previous one.

On the selected playlist contextual menu, every entry shows the destination folder40, the
converter preset name and the filename mask41. When the folder or the preset is not set, ’(Folder)’
and/or ’(DSP)’ is shown instead (and they will have to be manually set at execution).

Figure 52: The current preset has a converted
preset defined and the filemask, but output
folder will be asked at execution.

Figure 53: Setting output path. Converter
preset should be set to also ask output path
before conversion to reuse it in both windows.

This exporting option is not available for readable-only formats[V]. To use it on Auto-playlist,
first clone it as standard playlist [7.3], then proceed as usual. To do something similar with .fpl
playlists, manually convert them to a writable format and then proceed as usual.

40Along the disk letter in parenthesis.
41Must match the one found at the converter preset to work as intended.

31

9 Additional tools

9.1 On selected playlist

The following set of tools can be found on the selected playlist contextual menu [11].

9.1.1 Force relative paths

Paths within a playlist can be converted to relative paths stripping all but the filename42. It’s a
destructive action, which edits the playlist file and can not be undone... although it a backup can be
found at the Recycle Bin [4.9]:

[...]
#EXTINF:259,Jaki Graham - Round And Around
D:\library\Big Retro Hits 90s\004. Round And Around.mp3
[...]

⇓⇓⇓

[...]
#EXTINF:259,Jaki Graham - Round And Around
.\004. Round And Around.mp3
[...]

9.2 On entire list

The following set of tools can be found on the list contextual menu [11].

9.2.1 Dead items

The manager can check all the playlists currently tracked for dead items on them, whether the tracks
are on current Foobar2000’s library or not. Dead items are considered files which don’t exist at their
path, no matter if it’s a relative or absolute path.

The tool will span a popup reporting a list of playlists with dead items (but will not list
the items their-selves). To find such items or replace them with items from current library use a
dedicated tool like the one found at Playlist-Tools-SMP43.

9.2.2 External items

The manager can check all the playlists currently tracked for external items on them, i.e. tracks not
present on Foobar2000’s library but which exists at their path. Note external items are technically

42It’s easy to see this is equivalent to using the ’export and copy tracks’ feature [8.2] without copying the tracks and
overwriting the original playlist file

43Look for ’Playlist Revive’.

32

https://github.com/regorxxx/Playlist-Tools-SMP

not dead items, since they do exist outside Foobar2000 database.

9.2.3 Duplicated items

The manager can check all the playlists currently tracked for duplicated items on them, i.e. two tracks
with the same path. Note there is a limit though, if absolute and relative paths are intentionally
mixed and 2 paths point to the same physical file, they will not be considered duplicated. For ex44:

[...]
#EXTINF:141,Jeffery Mykals - Gyal Bad
..\music\Jeffery Mykals - Gyal Bad.mp3 ∗
#EXTINF:141,Jeffery Mykals - Gyal Bad
D:\music\Jeffery Mykals - Gyal Bad.mp3
[...]
#EXTINF:141,Jeffery Mykals - Gyal Bad
..\music\Jeffery Mykals - Gyal Bad.mp3 ∗

The tool will span a popup reporting a list of playlists with duplicated items (but will not list the
items their-selves). To find such items or remove them use a dedicated tool like the one found at
Playlist-Tools-SMP45

9.2.4 Mixed absolute and relative paths

The manager can check all the playlists currently tracked to ensure there are no playlist files with both
absolute and relative paths at the same time. Such files are probably an error, whether intentional or
not, and should be fixed in most cases. For ex:

[...]
#EXTINF:141,Jeffery Mykals - Gyal Bad
..\music\Jeffery Mykals - Gyal Bad.mp3
#EXTINF:271,Jeffery Mykals - Chico & Voicemail
D:\music\Jeffery Mykals - Chico & Voicemail.mp3

The tool will span a popup reporting a list of playlists with such ’problem’. If all items exist (no
dead items), as soon as the playlist is rewritten by the manager it will be automatically fixed46.

44Only the tracks with an ∗will be considered duplicates.
45Look for ’Duplicates and tag filtering’. Foobar2000’s main menu ’Edit/Remove duplicates’, after loading the

playlist, can also be used.
46It will use the current path configuration, thus converting all paths to absolute or relative paths. Rewrite will

trigger, after loading the playlist within Foobar2000, on auto-update or via manual update on selected playlist menu
[11].

33

https://github.com/regorxxx/Playlist-Tools-SMP

10 Manual refresh

Since auto-loading may be disabled [4.7.2] or the refresh time set too high, there is an option on the
list contextual menu [11] to force updating the tracked folder and its playlists. Any new file found
will be added to the list.

Figure 54: Force manual refresh of list.

As a side effect, Auto-playlists’s metadata will be refreshed (size). Note this is the only way
to do it unless configured to do so automatically [14.2] at startup or individually loading them. Since
doing it at startup involves slower loading times, it may be better to refresh them manually from
time to time using this option.

Figure 55: Automatically update Auto-playlists size on startup.

34

11 Shortcuts

All features can be used using the following mouse gestures:

- Left Click: Selected playlist contextual menu.

- Right Click (list): List menu; new playlist and other playlist tools.

- Right Click (header): Manager configuration.

- Double Click (list): Load selected playlist / Make bound playlist active.

- Double Click (header): Categories cycling.

- Ctrl + Left Click: Load selected playlist / Make bound playlist. active

- Shift + Left Click: Send current selection to selected playlist.

- Ctrl + Shift + Left Click: Recycle selected playlist.

35

Part III

UI

12 Features

- UI re-sizable on the fly. i.e. it will adjust layout to panel size.

- Selection indicators.

- Now playing playlist indicator: /

- Loaded playlist indicator: �

- Empty / not empty playlist indicators. To be used as fallback when size is not shown.

- Font Size (configurable).

- Separators between different names/categories (configurable).

- Colors for different playlists types, status, text, background and selection (configurable).

Figure 56: Now playling (’External’), loaded (’a playlist two’) and two non loaded playlist.

36

13 List view

The main panel view features a simple listing of all currently tracked playlists (whether they are
physical or virtual -json- files). This view can be filtered according to these parameters:

• Show all / Only Auto-playlists / Only standard playlists.

• Show all / Not locked / Locked.

• By selectable categories (virtual folders).

• By selectable tags.

The current view is always maintained on subsequent foobar startups unless changed. Note tag
filtering is always reset since it’s meant for informative purposes47, not for playlist categorization.

13.1 Category filtering -permanent-

Playlists may be filtered by category (like virtual folders), and multiple individual selections are
allowed via menu (for ex. to display all but one specific category). When lists are being filtered by
category, an indicator is shown in the header text. The selected filtering is maintained on subsequent
startups.

Figure 57: ’Final playlists’ category has been
exluded.

Figure 58: The header and tooltip indicates
a filter is active.

An additional way to filter by category is cycling the current category being shown (one by
one) [11]. This works in conjunction with playlists being allowed to only have one category at the
same time, so no playlist will be shown more than one time.

47In fact is also used for some complex playlist automatic actions.

37

13.2 Tag filtering -temporal-

Playlists may also be filtered temporarily by tags; it gets reset on subsequent startups. Therefore
tags should only be used for informative purposes but not for categorization. Note a playlist may
have multiple tags at the same time.

Figure 59: 2 tags have been exluded, showing
only playlists without tags.

Figure 60: Note the header does not warn
about filtering for tags.

13.3 Sorting

List view may be sorted by name, category or size. By default playlists are sorted by name, using
natural sorting (Az). Ordering may be changed using the appropriate buttons. The selected sorting
mode is maintained on subsequent startups.

Figure 61: Sorting menu on header menu with
the different modes.

Figure 62: Sorted by size (note the ’(S)’ on
the sorting order button).

38

Additionally, name / category separators may be shown on the UI to easily identify where
the next char begins (123, A, B, ...). ’Size’ mode does not make use of this feature.

Figure 63: ’A’, ’H’ and ’I’ separators are shown for names.

13.4 Tooltip

Tooltips show different playlist info:

- Header:

* Absolute path of currently tracked playlist folder.

* Filters used on current view.

* Categories shown.

* Playlist and Auto-playlists shown on current view.

* Shortcuts info (configurable).

39

- Playlists:

* Playlist type: Playlist / Auto-Playlist

* Name plus UUID.

* Playlist size (tracks). Configurable for Auto-playlists (output by query).

* File name with extension.

* Status (lock).

* Category / Tag(s).

* Track Tag(s).

* Query. Sort Pattern. (only Auto-playlists)

* Shortcuts info (configurable).

Figure 64: Playlist tooltip. Figure 65: Header tooltip.

40

14 Customization

14.1 Custom color

- Background: panel background.

- Standard text: for standard playlists and header.

- Auto-playlists: different color for Auto-playlists.

- Locked playlists: different color for non editable (locked) playlists.

- Current selection: currently selected playlist.

Figure 66: 2 panel instances with different UI colors set.

14.2 Others

- Tooltip: Shortcuts info [11] can be shown or hidden.

Figure 67: Header menu to enable shortcuts info. Figure 68: Tooltip.

41

- Menus: menu header for selected playlist contextual menu [11] can be shown or hidden.

Figure 69: Header menu to enable playlist headers. Figure 70: Contextual menu.

- Separators: Name or Category separators may be shown when sorting by those values.

- Font size: applies to all text within the panel.

- Playlist size: Track count may be shown on parenthesis along playlist names. An additional
configuration allows to refresh Auto-playlists on startup.

Figure 71: Show size on list.
Figure 72: Size and separators are
shown for playlists.

Figure 73: Automatically update Auto-playlists size on startup.

42

Part IV

Other scripts integration

Other scripts integration:

- Playlist-Tools-SMP:

* Random Pools: Pools may use tracks from playlists files tracked by the manager, not
requiring to have playlists loaded within foobar. i.e. Random Pools component-like playlist
creation, using not only queries as sources, but also other playlists or playlists files.

* Playlist Revive: Finds and replaces dead items on loaded playlists or selection. Meant
to be used along dead items checks on playlist files [9.2.1]. First check all playlist files,
then load those with dead items and use Playlist Revive.

* Duplicates and tag filtering: The manager allows to report playlist with duplicated
items, but it’s limited to entries with same path. This tool expands Foobar2000 native
functionality of removing duplicates, allowing to find duplicates by tags (for ex. any track
with same Title - Artist).48

* Import track list: Takes a plain text list of tracks (for ex. Title - Artist) and finds
matches on library to create a playlist. Meant to be used for playlist importing when the
track list does not follow an standard format or there are no paths provided49. Instead of
sharing a list of files, list of tracks may be used which work universally no matter your
configuration. Non found items are simply discarded.

48A limited functionality version has been included which applies when cloning Auto-playlists if configured to do so
[7.3].

49Technically that is not a playlist. But note playlists with relative paths may easily be considered a track list as
long as you discard the ’.\’ part. In other words, a plain-text list can be retrieved from playlists in many cases.

43

https://github.com/regorxxx/Playlist-Tools-SMP

Part V

Playlist formats

• Writable formats: .m3u, .m3u8 and .pls.

• Readable only formats50: .fpl and Auto-Playlists.

In general, writable formats work with more features than their readable only counterparts51. This
is specially true for .fpl playlists, which are pretty limited on all aspects52. Therefore, the use of
.m3u8 playlists is preferred over other formats (.fpl or .pls) whenever it is possible.

15 Playlist metadata

15.1 Lock state

Playlist files may be locked or not. Locked files are considered read only for all purposes and therefore
never rewritten unless forced to do so [by the user]. Native foobar playlists files (.fpl) are locked by
default.

15.2 [Playlist] Tags

Playlists may have multiple tags, i.e. keywords for informative purposes. There are some special
purpose tags which are associated to some actions performed by the manager automatically as soon
as it loads a playlist with such keywords.

- Playlists may be tagged with ’bAutoLoad’, ’bAutoLock’ or a custom set of tags (for arbitrary
purposes).

- ’bAutoLoad’ makes the playlist to be loaded within foobar automatically (on the UI). Meant
to be used on remote servers with online controllers.

- ’bAutoLock’ locks the playlist as soon as it’s loaded on the panel.

50For all purposes, locked playlists may be considered into this category, no matter their extension.
51There are some more exceptions to this rule. For example, .m3u8 playlists have more features than .pls ones.
52Neither exporting [8], nor additional tools [9] work with them. And obviously, since they are a readable only

format, no new tracks may be added to them using the manager.

44

15.3 Track tags

[”tagName”:”tagValue”]

Playlists may have multiple track tags, i.e. tag presets which are meant to be applied to the tracks
within the playlist. Note this has nothing to do with the [Playlist] Tags which are just keywords.
Allows multiple conditions (must follow json format) [VI] where the tag value(s) can be any of the
following:

- Foobar2000 Title Format expressions (or %tags%)53.

- JavaScript functions (defined at ’helpers\helpers xxx utils.js’), prefixed by ’JS:’.

- Value (string or number).

15.4 Category

Playlists may have a single category for easy classification or which can be used as virtual folder. For
informative purposes or arbitrary keywords use [playlist] tags instead]15.2].

15.5 UUID

Suffixes added to the playlist names to separate them from non tracked playlists when loaded in
foobar. Some also allow some level of name duplication.

- Invisible Unicode chars plus (*)54

- (a-f)55

- (*)56

- Or none57.

53https://wiki.hydrogenaud.io/index.php?title=Foobar2000:Titleformat Reference
54Allows the highest degree of name duplication. For ex. multiple playlists with name ’Summer’ would have different

invisible UUID’s... Experimental feature.
55Allows some degree of name duplication. The UUID will be visible along the name, thus being less useful than the

Unicode version... but more stable.
56Duplication is not allowed but serves as a indicator of playlist being tracked by the manager.
57The only way to know if the playlist is tracked by the manager is by looking at the manager panel and checking

the loaded or now playling indicators[12].

45

https://wiki.hydrogenaud.io/index.php?title=Foobar2000:Titleformat_Reference

16 .m3u & .m3u8

M3U (MP3 URL) is a file format for a multimedia playlist. Although originally designed for audio
files, such as Flac, it is commonly used to point media players to audio and video sources, including
online sources, without distinction. There is no formal specification for the M3U format, it is a de
facto standard.

An M3U file is a plain text file that specifies the locations of one or more media files. The
file is saved with the ’m3u’ filename extension if the text is encoded in the local system’s default
non-Unicode encoding (e.g., a Windows code-page), or with the ’m3u8’ extension if the text is UTF-8
encoded. Within the manager, for all purposes, files generated by it are equivalent since ’.m3u’ files
are also UTF-8 encoded58.

Each entry carries one specification. The specification can be any one of the following:

• An absolute local path-name; e.g., C:\My Music\Listen.mp3

• A local path-name relative to the M3U file location; e.g., Listen.mp3

• A URL; e.g., http://www.example.com:8000/Listen.mp3

Position Description Entries

Header: Required if using Extended M3U. #EXTM3U,#EXTENC[,...]

Track(s) Track entries, arbitrary number allowed. [#EXTINF,]file path or url
...

Table 2: M3U structure.

16.1 Extended M3U

The M3U file can also include comments, prefaced by the ’#’ character. In extended M3U, ’#’ also
introduces extended M3U directives which are terminated by a colon ’:’ if they support parameters.

Directive Description Example

#EXTM3U File header, first line #EXTM3U
#EXTENC: Text encoding, second line #EXTENC:UTF-8
#PLAYLIST: Playlist display title #PLAYLIST:My Playlist
#EXTINF: Track information: seconds and title #EXTINF:256,Chateau Pop - Maniac

Table 3: Standard M3U extensions.

58Although this ’breaks the standard’, it’s indicated with the appropriate extended M3U directive so it should be
totally safe. Also note the 2015 proposal for HTTP Live Streaming follows the same convention.

46

Since arbitrary comments can be prefaced by ’#’ and custom directives are allowed, the
manager includes its own set of directives to support additional playlist metadata [15]:

Directive Description Example

#UUID Playlist UUID [15.5] #UUID: (*)
#LOCKED: Lock state #LOCKED:false
#CATEGORY: Playlist category #CATEGORY:Summer
#TAGS: Playlist tags (sep by ’;’) #TAGS:Celtic;Chill
#TRACKTAGS: Tags to apply tracks (json) [15.3] #TRACKTAGS:[”Mood”:”Chill”]
#PLAYLISTSIZE: Playlist size (# of tracks) #PLAYLISTSIZE:2

Table 4: Additional M3U extensions for playlist metadata support.

The use of Extender M3U along the additional custom directives allows the manager to
make use of all features without restrictions. For ex. playlists may have UUIDs independently of
their playlist name, categories may be used to filter the list, etc.

An example of a full .m3u8 playlist with relative paths59 can be found below:

#EXTM3U
#EXTENC:UTF-8
#PLAYLIST:My playlist
#UUID: (*)
#LOCKED:false
#CATEGORY:Summer
#TAGS:Celtic;Chill
#TRACKTAGS:[”Mood”:”Chill”]
#PLAYLISTSIZE:2
#EXTINF:256,Chateau Pop - Maniac
.\Music\Big Retro Hits 90s\007. Chateau Pop - Maniac.mp3
#EXTINF:259,Jaki Graham - Round And Around
.\Music\Big Retro Hits 90s\004. Jaki Graham - Round And Around.mp3

59Playlist file would be at current folder and tracks within ’music’ subfolder.

47

17 .pls

PLS is a file format for a multimedia playlist. Used with audio and video sources, including online
sources, without distinction.

PLS is a more expressive playlist format than the basic M3U playlist, as it can store
information on the song title and length (supported in extended M3U only)60.

The format is case-sensitive and essentially that of an INI file structured as follows:

Position Description Entries

Header: Always required. ’As is’ [playlist]

Track(s) File entries, arbitrary number allowed. X equals entry number FileX[,TitleX,LengthX]
...

Footer Always required. NumberOfEntries,Version

Table 5: PLS structure.

Key-value pairs are separated by ’=’:

Entry Description Example

[playlist] Always required [playlist]
FileX Location of media file/stream. File1=http://stream2.streamq.net:8020/
TitleX Track title (optional) Title1=My radio station
LengthX Seconds (-1 equals indefinite) (optional) Length1=-1
NumberOfEntries Playlist size (# of tracks). Required NumberOfEntries=3
Version only a value of 2 is valid. Required Version=2

Table 6: PLS entries.

Since the pls format follows a pretty strict format, additional metadata like categories or UUID’s can
not be used with them (playlist name is the same than the filename). Switch to another format to
make use of those features.

An example of a full .pls playlist with relative paths61 can be found below:

[playlist]
File1=.\foobar2000\Big Retro Hits 90s\004. Jaki Graham - Round And Around.mp3
Title1=Round And Around
Length1=259

File2=.\foobar2000\Big Retro Hits 90s\007. Chateau Pop - Maniac.mp3
Title2=Maniac
Length2=256

NumberOfEntries=2
Version=2

60This is only true for basic M3U playlists usually found on the net. Within the manager context, M3U playlists are
always richer in metadata and features since they make use of extended M3U and the additional custom directives.

61Playlist file would be at current folder and tracks within ’music’ subfolder.

48

18 .fpl

FPL is a file format for a multimedia playlist by Foobar2000. Used with audio and video sources,
including online sources, without distinction.

It’s a closed source format whose structure has not been shared publicly, although it’s
known it uses a binary format to store the metadata of the tracks included to greatly speed up its
loading time within the program62.

Although it looks as an improvement over plain text playlist formats, the ’closed source &
binary’ format requirements no longer holds true to offer short loading times. Plain text playlist
formats may be used perfectly fine, as long as the files are matched with those on the library, without
speed penalties63. This is the behavior followed by manager and it has been already reported to
Foobar2000 developers 64 to properly implement playlist loading if desired. Loading speed penalties
only happen when some items are not on library (whether they are external items or dead items) [9].

To allow additional metadata for .fpl playlists, considering the files are non-editable, an
external json file is used [VI]. The same applies to Auto-Playlists. The following keys-values pairs
are used:

Entry Description Example

id UUID ”id”: ” (*)”
name Playlist name ”name”: ”example”
nameId Playlist display name ”nameId”: ”example (*)”
extension Playlist file extension ”extension”: ”.fpl”
path Playlist file path ”path”: ”.\profile\playlist manager\example.fpl”
size Playlist size (# of tracks) ”size”: 2
fileSize Playlist file path ”fileSize”: 20739
isLocked Lock status ”isLocked”: true
isAutoPlaylist Is an Auto-Playlist? ”isAutoPlaylist”: false
query Auto-Playlist query ”query”: ””
sort Auto-Playlist sort(optional) ”sort”: ””
bSortForced Auto-Playlist sort forced? ”bSortForced”: false
category Playlist category ”category”: ”Summer”
tags Playlist tags (sep by ’;’) ”tags”: [”bAutoLoad”,”bAutoLock”]
trackTags Tags to apply tracks (json) ”trackTags”: [”Rating”: 5]

Table 7: FPL (and Auto-Playlist) json format.

Note all Auto-playlist related metadata is empty, the path points to the physical .fpl file
and its file-size is cached65. Apart from those differences, it can be easily checked that all playlist
metadata is present (the same it was in M3U format). In fact, all playlists are converted -for internal
use- to this format within the code.

62Instead of loading the tracks and retrieving their metadata from the physical files.
63Which is one of the most common use-case of playlists within Foobar2000.
64Check Why m3u8 loading is so slow on hydrogenaud.io-
65For Auto-playlists, it would be the contrary. No physical file is associated and the query and sorting is used

instead... but -essentially- they use the same format.

49

https://hydrogenaud.io/index.php?topic=120929.0

An example of a full .fpl playlist associated json file can be found below. In real files, every
playlist would be concatenated to the same file, thus having multiple {playlists objects}, separated
by comma (’,’), between the brackets [{...}, {...}]:

[
{

”id”: ” (*)”,
”name”: ”Example”,
”nameId”: ”Example (*)”,
”extension”: ”.fpl”,
”path”: ”.\profile\playlist manager\Intercalate mix.fpl”,
”size”: 51,
”fileSize”: 20739,
”isLocked”: true,
”isAutoPlaylist”: false,
”query”: ””,
”sort”: ””,
”bSortForced”: false,
”category”: ”Summer”,
”tags”: [”bAutoLoad”,”bAutoLock”],
”trackTags”: [”Mood”: ”Chill”]

}
]

50

19 Auto-Playlists

Structure and format is exactly the same than .fpl use-case, so check it for reference [18]. Specifics
for Auto-Playlists are listed below:

Entry Description Example

extension Playlist file extension ”extension”: ””
path Playlist file path ”path”: ””
fileSize Playlist file path ”fileSize”: 0
isAutoPlaylist Is an Auto-Playlist? ”isAutoPlaylist”: true
query Auto-Playlist query ”query”: ”ALL”
sort Auto-Playlist sort (optional) ”sort”: ”SORT DESCENDING BY TITLE”
bSortForced Auto-Playlist sort forced? ”bSortForced”: true

Table 8: Auto-Playlist json format changes.

Extension and path are empty, since there is no physical file associated. File-size is therefore
equal to zero. ’isAutoPlaylist’ boolean is true and the query related value must be filled. Sorting is
optional.

An example of a full Auto-playlist associated json file can be found below66. In real files,
Auto-Playlists are mixed with .fpl playlists... the only distinction being the ’isAutoPlaylist’ boolean
value:

[
{

”id”: ””,
”name”: ”Entire Library”,
”nameId”: ”Entire Library”,
”extension”: ””,
”path”: ””,
”size”: 132,
”fileSize”: 0,
”isLocked”: false,
”isAutoPlaylist”: true,
”query”: ”ALL”,
”sort”: ”SORT DESCENDING BY TITLE”,
”bSortForced”: true,
”category”: ”Summer”,
”tags”: [],
”trackTags”: []

}
]

66For ex. if the panel is set to track ’H:\My Music\Playlists’, then the playlist json file (at foobar profile folder) will
be at ’.\js data\playlistManager Playlists.json’.

51

Part VI

FAQ

- Writing playlists to files fails due to permissions problems? Use something like this:

attrib -r D:\YOUR PLAYLIST PATH* /D /S

- How to use native foobar playlists (.fpl) without changing their format? .fpl playlists
are locked by default, so they will never be auto-saved (and thus reformatted) without user
intervention. Just save all your foobar playlists on the tracked folder and load them when
needed using the manager. Whenever you make a change on any of them, re-save it manually
using main menu (File/Save playlist...). This way the native format is maintained, while
some neat features are still available for use (not cluttering the UI with all playlists on tabs,
categories, tags, etc.).

- To create/track a folder in the same folder Foobar2000 resides in, relative paths
may be used (.\playlist manager\server\): Note this will allow the manager to work
properly on portable/network installations where the drive letter or absolute path changes.

- Native playlists are too limited in features? The use of .m3u8 playlists is preferred since
it allows the full use of all features. This is by design, and nothing can be done unless the
format becomes open source or Spider Monkey Panel supports directly editing/saving them.
Nothing is lost using .m3u8 playlists, since they load as fast as native playlists when using the
manager.

- Playlist metadata is lost on format switch: Since only .m3u8 supports the full set of
metadata and features, converting those playlists to .pls necessarily implies discarding of not
supported metadata. Converting those playlists back to .m3u8 format will not restore it once
is lost!

- What’s json? It’s a standard file structure. Check https://en.wikipedia.org/wiki/JSON for
more info.

- Can’t edit or update a playlist: Check the playlist status. It’s probably locked, unlock it
to be able to make changes.

52

https://en.wikipedia.org/wiki/JSON

Part VII

Tips

20 Sharing

- As noted on [4], Autoplaylist’s json file is saved using the tracked playlist folder
name. Instead of using an arbitrary UUID to avoid collisions between multiple panels, this
can be used to easily share playlists between different foobar instances. Just create
SymLinks67 or use some cloud syncing tool (like Dropbox) to easily share the same playlists
when tracking the same folder on different foobar instances or panels. Note only the folder
name is used, so it would work even on shared network folders.

21 Multiple views

- Following the same principle, it’s possible to have multiple panels tracking the same folder
in the same foobar instance. It may be used to have different filters enabled at the same
time. For ex. one view for Auto-playlists only and another for .m3u8 playlists.

- Categories may be used as virtual folders, even if all playlists are in the same
physical folder. Note every playlist can only have one category at the same time, so cycling
the categories allows to easily see different ’virtual sub-folders’. Double clicking on the header
allows to easily do that. Alternatively, the multiple panel tracking the same folder trick can
be used to show 2 views of the same physical folder but with different categories filters, again
working as sub-folders.

22 Tag automation

- Tracks are never tagged twice using the Track tags feature, so there is no need to
check if any of them has been already tagged or not before.

- Using Auto-playlists along the Track tags feature, items on library can be auto-
tagged on startup according to some conditions without any user input. For ex. tagging all
tracks with ’Rock’ and ’Acoustic’ as genre and BPM lower than 90 with an specific mood or
occasion tag. Just set it and forget, it will be done on every new track added on library as
soon as it matches the conditions.

- Using standard playlist along the Track tags feature is an easy way to manually
tag tracks on batches while listening to them. For ex. to add tags like ’Instrumental’ or
’Acoustic’, 2 playlists may be used for auto-tagging with these conditions and just listen to the
music; as soon as one track must be tagged it takes a second to send the current track to any
of the 2 playlist (Shift + L. Click) to tag it.

67Symbolic links are virtual links created by the OS which may be used to have multiple virtual files pointing to
the same physical file. It’s similar to a shortcut, although the extension doesn’t change in this case... and the file
properties are those of the original one.

53

- Use category filtering to have a virtual folder of ’tagging playlists’ which would
only be shown when needed, thus not convoluting the UI the rest of the time. This has
some improvements and limits compared to the use of custom buttons and Mass-tagger presets.

23 Pools

- Native Foobar2000 limits the sourcing of Auto-playlists to the library, not allowing
to create playlists from playlists... although this can be simulated copying the original
query and using in the new playlist, it becomes easily convoluted as soon as you do it 2 or 3
times. As an alternative, Track tags feature may be used. If you set any playlist to
automatically tag its tracks with an specific tag, for ex. playlist = ’Summer’, you can
then create another Autoplaylist with a query for that tag ’PLAYLIST IS Summer’.

- The same trick can be used to merge multiple playlist sources into one (’PLAYLIST
IS Summer OR PLAYLIST IS Chill OR PLAYLIST IS BEST’), effectively using other
playlists as pools. Note ’sources’ are not limited to Auto-playlists and that’s the real power
of this solution, both standard playlists and Auto-playlists which automatically tag tracks this
way may be used.

- Alternatively, Playlist-Tools-SMP [IV] allows to directly use playlists as sources for
pools without requiring the use of intermediate tags.

- Used along Playlist-Tools-SMP [IV], the emulation of pools can be greatly enhanced with the
Remove Duplicates or X random selection features to create playlists in a matter of seconds
from your pre-selected set of tracks.

- More complex workflows may be done by mixing these tips along the Pools feature of Playlist-
Tools-SMP [IV], using the already created ’pools’ playlists within the playlist manager as
sources.

24 Working with locked playlists

- Forget about lock status on Foobar2000 playlists. There are some plugins or even Spider
Monkey Panel scripts which allow to lock/unlock native playlists in some way or another. While
it may come useful for advanced users, regular users should simply stick to the manager lock
features. Playlists now have a physical file counterpart which can be locked, so there is no need
to lock playlists within UI for changes68.

- Instead of forbidding edits, just reload the playlist. The native approach focuses on
forbidding specific actions on playlists (reordering, adding, removing items, etc.). Locking the
playlist file allows any of those edits on the loaded playlist and if you want to revert them just
undo them or reload the playlist to discard all of them and revert it to the original version.

- Edits on locked playlists can be saved if forced to do so but never automatically.
By default, any change made to a locked playlist loaded within Foobar2000 is not auto-saved
and therefore only temporarily stored while the playlist remains opened... but this can be
bypassed on demand without unlocking the playlist using the ’Force playlist file update’ entry
on the selected playlist contextual menu [11].

68This also simplifies some quirks about playlist locks which involve the type of lock and owners...

54

25 Portable ’plug&play’ installation

- Real portable installations (i.e. on a external drive, network installations, etc.)
may need to track playlist folders using their relative paths instead of absolute paths
to work properly... otherwise they will not found the tracked folder as soon as the drive letter
changes. e.g, .\profile\playlist manager\server\

- Relative paths for files always are checked against foobar path; this is true only
at places like the properties panel, etc.69 i.e. ’.\profile\playlist manager\server\’ equals to
’D:\foobar2000\profile\playlist manager\server\’.

- Relative paths on playlists should be preferred... this is specially a must when the music
is stored along the disk Foobar2000 resides in. Otherwise the files would not be found as soon
as the drive letter changes (see previous tip). This may greatly affect the speed of the loading
playlist process or even make it fail.

- Use the ’Check playlists consistency...’ (right button menu) to ensure all is properly set
(library, configuration, playlists, ...) on portable installations; also handy to ensure all
playlists items are found and within the library.

- Once the panel is set properly, it just takes a matter of seconds to copy the entire manager ’as is’
to other installations: the config files (FOOBAR PROFILE PATH\js data*.json), properties
panel (can be saved as json) and playlists folder (along its files) can be transferred without
changes.

69When checking tracks, their root is considered to be the playlist path.

55

	I Introduction
	Why do we need a playlist manager?
	Playlist tabs and UI limits
	Auto-playlists slowdowns
	Playlists are a bit auto-destructive

	Multiple problems, one solution?
	Which playlist are compatible with it?

	II Features
	Tracking folder
	Managing Playlist files and Auto-playlists
	Auto-playlists
	Standard playlists
	How paths are written: absolute and relative paths
	Setting playlists format
	Creating playlists
	Playlist loading
	Auto-saving and Auto-loading
	Auto-saving
	Auto-loading

	Playlist binding
	Deleting and restoring files
	Locking files

	Automatic playlist actions
	Automatic track tagging
	Exporting Auto-playlist
	Exporting or importing Auto-playlist files
	Export as json file
	Clone as standard playlist

	Exporting playlists and files
	Copy Playlist file
	Export and copy tracks to
	Export and convert tracks to

	Additional tools
	On selected playlist
	Force relative paths

	On entire list
	Dead items
	External items
	Duplicated items
	Mixed absolute and relative paths

	Manual refresh
	Shortcuts

	III UI
	Features
	List view
	Category filtering -permanent-
	Tag filtering -temporal-
	Sorting
	Tooltip

	Customization
	Custom color
	Others

	IV Other scripts integration
	V Playlist formats
	Playlist metadata
	Lock state
	[Playlist] Tags
	Track tags
	Category
	UUID

	.m3u & .m3u8
	Extended M3U

	.pls
	.fpl
	Auto-Playlists

	VI FAQ
	VII Tips
	Sharing
	Multiple views
	Tag automation
	Pools
	Working with locked playlists
	Portable 'plug&play' installation

