
USING THE DYSON EXPANDERv1.5 (acts as a DolbyA DECODER)

Whenever the term ‘expander’ is used, it is meant that this expander can do a good job
of decoding DolbyA encoded material.

THIS RELEASE IS A MAJOR QUALITY IMPROVEMENT OVER ANY PREVIOUS
VERSION. The primary benefit is the fully implemented anti-hash.

IMPORTANT NOTE – READ THIS!!!
Any use of a long single dash for switches in this document are really ‘double
dashes’. You’ll notice that the dash at the beginning of switches is ‘longer’ than
a normal dash. That is a word processing artifact, and really means ‘two
dashes’, like this ‘- -’ right next to each other, without a space. So, I am keeping
the ‘long dash’ representation, with the understanding that is the same as two
dashes in command mode.

USAGE NOTE:
Only 44.1k through 192k sample rates are supported at all, but the best results
are 48k through 124k (yeah, odd value). There is no explicit limitation for sample
rates, however rates lower than 44.1k will elicit an error message about filters
not being possible. At 192k or higher, some of the bands will become sloppy,
and there will be some loss of quality and levels will not be quite correct. I am
not putting limits on the sample rate yet, because I might fix the problem.

BUGFIXES from 1.4 to 1.5:
Added –help command with short explanation.

Bounce non-2 channel files.

Improve doc that shows that the command switch ‘dash’ is really a ‘double dash’

Fix the attack time at low levels in the 80-3k band. Too much treatment for intermod
removal had caused the attack time to be too slow at low levels. This issue has been
fixed.

Minor speedup of the attack/decay time processing for AVX style CPUs – that 10-20%
speedup will be used eventually to support the default use of the –ai=high option
instead of –ai=med – which gives a marginal improvement in audio quality.

Default for the threshold is now -15.5dB. This is a more normal value for the threshold,
but it is likely in error. ALWAYS specify the threshold!!!

NEW FEATURES from 1.4 to 1.5:

Added –input=filename.wav and –output=filename.wav to specify input and output files
to better satisfy the sensibilities of non Unix/Linux/FreeBSD users.

NEW FEATURES from 1.3 to 1.4:
Added extreme anti-intermod to the 80-3k channel. Special filtering without losing any
response between 80-3k. This extreme anti-intermod code is disjoint from the anti-
hash code, but utilizes the anti-hash code when it is enabled. The extreme anti-
intermod code is enabled at –ai=high and –ai=max.

Added stronger anti-hash code and a switch to disable (--ah=off) The stronger anti-
hash code is most noticeable on strong female voices or male voices with some
sibilance. The anti-hash code is normally enabled except when the anti-intermod is
totally disabled (when the –ai=none or –ai=off switches are used, then the –ah switch
doesn’t do anything – the anti-hash is fully disabled when anti-intermod is fully
disabled.)

BUGFIXES from 1.3 to 1.4:
Opened up some frequency ranges which were somewhat de-emphasized. The 3-
9kHz band was being rolled off at 13.5kHz, which was too low because of the wide
filters being used for DolbyA emulation. So, the filters for anti-aliasing in the 3-9kHz
band were extended fully to 20.5kHz. There is still significant (and of critical
importance) filtering on the low side of the band (both 3-9kHz and 9kHz-20.5kHz.)

This is NOT meant to be a replacement for a true DolbyA, but for convenience when material on a
computer appears to be DolbyA encoded. The name Dolby is probably owned by Dolby Labs, and
absolutely no proprietary material resides in the expander code base.

This design results from an initial inference as to what is necessary to implement, then
further/exhaustive listening tests to narrow down the exact parameters. Thank God that my hearing
is mostly intact (except for about about 13-14kHz), and enabled me (along with some wonderful help)
to make the tuning as accurate as it is.

Copyright 2018, John S Dyson.
Copying is allowed, and any inclusion in a commercial product requires my copyright and my
statement of permission.
Attribution must be given to the recording engineer who has helped so very much – I cannot
divulge his name without permission, and will do so when I can in an appropriate way.

People using this commercially should donate a little to help with the effort. There is going to be a
DolbySR effort soon, and need some more resources to complete that task. The level of complexity

of DolbySR is much more complex than DolbyA, which is more complex than either DolbyC or
DolbyB.

This program is currently command line only – a gui wrapper could be developed, and the processing
code could be included into a plugin, but I haven’t decided which platform where I want to do the
plugin yet… This program is fairly CPU intensive, and goes far beyond a basic decoder WRT quality
matters. After the usage info, there will be an explanation about what is going on in the decoder.

Program usage:

There are current two versions of the windows program: da-win and da-avx, both are 64 bit X86 only.
The da-win version will work on most SSE2/3 cpus and da-avx will need AVX2. The da-win version
has been tested on a Silvermont ATOM and the da-avx should work well on Haswell or better (that is
a 4000 series CPU. Will probably work on a 3000 series.) The program is not multithreaded, so any
more than one core gives only minor performance help.

Command line (all examples will be for the da-win version, but the da-avx version can be used on
appropriate computers);

da-win –thresh=-15.50 <inputfile.wav >outputfile.wav

Note the simple stdin/stdout command line, but pipes can be used just as easily, and a few examples
will be given below.

The –thresh=-15.50 is the decoder threshold (a few dB lower than the expander reference tone level),
and for commercial recordings is usually in the range of -14.75 to -16.25, while -15.25 to -15.75 are
most common. If the ‘thresh’ is wrong, then the sound will not be right (edgy super highs if too low,
weird jerks in the level if too high, some surging if too low.)

On a Haswell running at 3.4GHz, it will run approx 3X real-time on a single core. There are modes
where it can run faster, but a cost of quality.

File type: .wav only
Sample rates: 44.1kHz through 192kHz (decoder will attempt to work outside the range)
Data types: 16bit signed int, 24bit signed int(poorly tested), and 32bit floating

Here are the most useful ‘switches’:

--input=infile.wav Specify input file name – redirection/pipe superseded
--output=outfile.wav Specify output file name – redirection/pipe superseded
--thresh=xxx The threshold in dB. (default -15.5)
--ingain=xxx The input gain in dB.
--outgain=xxx The output gain in dB.
--ai=none Disable all anti-intermod. Equivalent to perfect normal

digital decoder without extraordinary techniques used in
this decoder. Lots of intermod, much of the ‘HF’ is
actually intermod.

--ai=off Disable all but the most simple anti-intermod.

--ai=med (Default) The safest full anti-intermod, traditional
design on MF band.

--ai=high Max anti-intermod/special MF band handling
--ai=max Minor extra anti-intermod beyond –ai=high
--ah=on Enable (default) anti-hash (only when anti-intermod is

functioning)
--ah=off Disable anti-hash
--info Provide running input/output levels

and per channel gain.
--floatout Force 32bit floating point output,

even if integer input.
--lfoff Disable LF (20-80Hz) expansion
--mfoff Disable MF (80-3kHz) expansion
--hf0off Disable HF0 (3k-9kHz) expansion
--hf1off Disable HF1 (9k-20kHz) expansion
--wide Change 21.5kHz limit to 0.46 sample rate
--hpf Make gain control less sensitive to LF

use of –hpf helps with intermod mitigation

The –lfoff,--mfoff,--hf0off,--hf1off switches each have a different meaning
available also:

--lfoff=xxx Shift the LF threshold by xxx dB
--mfoff=xxx Shift the MF threshold by xxx dB
--hf0off=xxx Shift the HF0 threshold by xxx dB
--hf1off=xxx Shift the HF1 threshold by xxx dB

A debugging/mode change switch is also available:

--raw Remove most of the anti-intermod filters.
--raw=xxx Special changes to filtering scheme.
--raw=8192 Bare-bones – no special cleanup (crunchy sound.)

Typical usage with sox.

Sox is a very useful tool that makes using the decoder much easier. It provides input/output rate
flexibility (decoupling it from the processing rate used by the program.) Also, it gives excellent file
type flexibility.

Using the decoder with flac for example:

Almost any flac file can be used for input, and almost any flac type can be specified for output, so
here is how you do it:

sox infile.flac –type=wav –encoding=floating-point –bits=32 – rate -v 96k | da-win –thresh=-15.50 –info |
sox - outfile.flac

Notice that the sample rate is specified on the input sox command, and the data type is also
specified. This is done to allow any acceptable flac file for input, while providing the program with the

highest quality input/output & sample rate for its processing. (192k should work better, and it does in a
way, but I compromised some of the filters so that the program performs better.) So, 96k is your best
bet. 48K is faster and quite acceptable, but 44.1k will sometimes sound ‘crunchy’.

I have sometimes found that recordings are either recorded with different thresholds for the MF
frequencies, or the encoder was disabled entirely. I have some Carpenters and ABBA recordings
which benefit from this modification:

sox infile.flac –type=wav –encoding=floating-point –bits=32 – rate -v 96k | da-win –thresh=-15.50 –mfoff –
info | sox – outfile.flac

Note the use of the ‘mfoff’ switch. This is needed only once in a while, for example 2-3 of my 8
Carpenter’s digital albums need the –mfoff switch, and some of my ABBA recordings (better than any
normal CD – a ‘Spanish’ import that wasn’t finalized) need the –mfoff switch. I suspect that the MF
compressor wasn’t fully disabled, but the levels were changed because of threshold sensitivity, and
so the decoder also supports an option to –mfoff where you can change the threshold. I have found
that on some recordings, --mfoff=-6 works great.

Usage notes:

I use the –info switch almost all of the time because the decoding does take quite a while (even if
faster than real time), and it is nice to know that things are going well.

The anti-intermod code helps to remove the ‘hash’ and fake sibilance from the audio. The higher
settings can cause some dips (order of 1dB) in the frequency response, but are very aggressive in
filtering out errant hash. All gain control systems produce that hash, and it is bad that digital designs
can be much worse than analog designs, but it is possible to filter out more of the hash in the digital
domain – so in all, the digital approach can be much better. The –ai=med is max performance for
now with no freq response impact and better than any practical analog design can be. For demo
purposes, all special processing (including anti-intermod) can be disabled by –ai=none –raw=8192

Technology:

The expander is ‘feed-forward’, but implemented so that the effects of unfolding the feedback
compressor are accurate. This expander is actually implemented as two separate devices running in
parallel – one for the left channel and one for the right. If ever needed (unlikely) it would be easy to
expand into a 5.1 expander if needed – but I believe that 5.1 came in after DolbyAs encoding days
were long gone. (There is still a LOT of DolbyA material out there.)

The attack/decay curves are designed to be pretty close to what DolbyA decoding needs, and
sometimes works poorly when attempting to decode non-DolbyA decoded signals. Specifically, the
decay curves are fixed/RC time constant (with a little frequency domain filtering to match the filtering
for attack.)

The ‘attack’ curves are where all of the ‘meat’ is. Everything above and beyond the normal odd
necessary attack curves is done to mitigate intermodulation effects – especially the first order effects
between the gain control and the signal frequencies. The scenario is as follows: a two step attack
curve, while the first and second phase time constants are not normal R/C but have some nonlinearity
built in. This helps to maintain a continuous flow of different necessary attack schemes depending on
a fast/high amplitude signal or a slow moving signal. Basically, there is NO NEED for a fast attack if
the signal levels are moving slowly – so asymptotically, for slow input level changes, the attack and
decay times are the same. However, for fast changing signal levels, the attack scheme has two
phases (both are dynamic.) The scheme is meant to maintain an effectively fast attack time, while not
wobbling about doing lots of evil intermodulation things… This is especially helpful in the digital
world, where the nonlinear operations also inter-modulate with the sampling/distortion products
wrapping around the Nyquist rate.

So – for the attack, there is some frequency domain filtering of both the pre-detection signal level, and
less drastic filtering of the after-nonlinear-transfer-function. Since after the partial/weak second order
curve, there is still some nonlinearity splattering around the signal (up past Nyquist), then there is
some pre-filtering meant to keep most of the stronger sidebands below the Nyquist rate. It is
important to be very careful doing two stages of filtering like this, because it can mess up the
dynamics, but there are some rules – if followed, the dynamics will be minimally affected. I made
such choices so that the gain control is fast (fast enough), but not noticeably slow in any way.

Additionally, due to the clipping in a DolbyA encoder compressor, there is some clipping in the
encoded signal. There is a very minimal amount of compensation for the natural clipping in the true
DolbyA also.

The general set of time constants is quite dynamic because of the unfolding from feedback to feed-
forward, so the extra time domain ‘boost’ caused by the feedback scheme doesn’t normally happen in
a feed-forward scheme. This is all compensated for quite accurately – so the dynamics in the
decoding should be nearly perfect. Also, the time constants for the two HF channels are different than
the LF and MF channels.

Another aspect of the decoder are the gain curves. Looking at the design from the outside – must
ignore the actual design parameters – it seems like there might be the same gain curve for each
channel, but that is not true. When looking at the output of a real DolbyA, no matter the internal
reasons, there are 4 different curves. Also, due to the way that the two channels (HF0, HF1) work
together, the HF1 channel has a totally different curve. The HF0 detection channel is 3-20kHz, while
the HF1 detection channel is 9-20Khz. On the other hand, the HF0 gain control channel is 3-9kHz
and the HF1 gain control channel is 9-20kHz, so that causes some interesting issues. Firstly, in the
feedback connection, the HF0,HF1 compressors outputs mix together with the rest, while the inputs
are overlapping. This means that the two outputs (and the two gains) need to be merged. This is
NOT a simple problem, even though the results are simple. Suffice to say that the method that is
used in the decoder is totally accurate.

Music (from my collection) that benefits from the expander/decoder. No time to look up all of the CDs
and compare or the download provenance – so will try to describe when needed. The real vinyl
albums will NOT need decoding because they were processed correctly. This only applies to the
digital copies from CDs, online, Hdtracks, etc. This is only a portion of my collection, and I have tried
to represent both encoded and non-encoded materials.

These settings were determined from a previous version of the decoder – the new values will
probably be approximately 1.0dB higher. So, for the Carpenters 1969-1971, -14.65 will be
better than the original -15.65.

ABBA Gold and ABBA Gold 2 Spanish CD
Requires using the –mfoff switch, and the –thresh=-14.50. Tried different MF offsets, and the
best appears to simply disable MF. On Carpenters below, it appears that there was a level
offset – odd. Don’t really know what is going on.

ABBA (vast collection of various Polar, Polydor,Atlantic, etc versions)
decoding is useless due to further compression/processing/etc.

Carpenters 1969-1971
--thresh=-15.65

Carpenters 1972,1973,1975-1977
--thresh=-14.50 (Previous version of the decoder had troubles with these recordings, but now
the problem is fixed.)

Herb Alpert – The Very Best
--thresh=-15.6 (really hard to determine!!!)

Olivia, Olivia!
--thresh=-15.50

Olivia, Let me be there (US)
--thresh=-15.50

Olivia, If you love me
--thresh=-15.7

Olivia, Let me be there (music makes my day)
(probably not encoded)

Olivia, Long live love
(probably not encoded)

Olivia, Clearly love
--thresh=-15.75

Olivia, Have you never been mellow
--thresh=-15.75

Suzanne Vega (with Luka, the mp3 song – the diner song at the beginning)
--thresh=-15.75

Cars – (a greatest hits type collection) (1: just what I needed, 2: my best friends girl)
--thresh=-15.75

Simon&Garfunkel – Parsely, Sage, Rosemary, Thyme
--thresh=-15.65

Simon&Garfunkel – Bridge Over Troubled Water
--thresh=-15.75

Simon&Garfunkel – Sounds of Silence
--thresh=-15.65

Queen – Greatest Hits

--thresh=-15.50
Carly Simon – Greatest Hits

--thresh=-15.60

Chicago – Greatest Hits (cheap bargain CD)
--thresh=-15.50

Sergio Mendes – Brasil’66
--thresh=-15.75

Burt Bacharach – Greatest Hits (2 disk)
--thresh=15.55

Dionne Warwick – Greatest Hits (2 disk)
--thresh=15.65

Carpenters – from Hdtracks
--thresh=-15.7

Paul McCartney/Wings unlimited from Hdtracks
--thresh=-15.6

In all of the above – the music is enjoyable whether or not decoded, but there is additional (real
technical) quality that can be extracted upon proper decoding!!!

